DieHarder:

A Gnu Public License Random Number Tester

by
Robert G. Brown

Duke University Physics Department
Durham, NC 27708-0305
rgb@phy.duke.edu

Copyright Notice
Copyright Robert G. Brown 2006
Current version: 3.31.1

Notice

This is documentation for the Dieharder random number generator test suite. As
the project itself is uses a Gnu Public License (GPL), the documentation uses an Open
Publication License (OPL). The precise terms of the OPL can be read in an appendix
at the end of the manual, and should be adhered to if you wish to make changes to this
work.

The current snapshot of this documentation is available for free online at:

http://www.phy.duke.edu/~rgh/General /dieharder.php

It will be made available in an inexpensive print version (probably via Lulu press) as soon
as it is in a sufficiently polished and complete state.

As a “live” document describing a dynamic and sophisticated tool, this book no doubt
has errors great and small and may or may not be up to date (and hence correctly describe
the latest release of Dieharder) at any given time. I apologize for this — my only excuse
is that I'm very busy and it’s all I can do to keep up with the bug reports, suggestions
for extensions, and my own plans for it, and sometimes documentation takes a back seat
to progress. It is, of course, an open source project and any reader who is so motivated
is welcome to join in.

I cherish good-hearted communication from Dieharder users pointing out errors or
suggesting new content (and have in the past done my best to implement many such
corrections or suggestions).

Open source projects of this sort generate useful collaborations. Although many
people have contributed to Dieharder at this point with corrections, new tests, new
generators to test, and permission to use their code, my greatest debt is to my co-
developers and partners, Dirk Eddelbeuttel (who maintains the ready-to-install Debian
version of Dieharder as well as the R interface) and David Bauer, who has contributed
numerous fixes to critical components (such as the ks-test program that is at the heart
of the way Dieharder works with many of the tests incorporated from their descriptions
in diehard and other sources), the “gold standard” AES and Threefish RNGs that are of
great use in testing Dieharder , and many new tests.

http://www.phy.duke.edu/~rgb/General/dieharder.php

Contents

1 Introduction 9
|2 lesting Random Number gigngratgré 15
3_Evaluating p-values 19
3.1 Xtest — A Single Expected Valud 19
|3,2 Vtest — A Vector of Expected Va]Jgfj 19
B3.2.1 Kolmogorov-Smirnov Testl 22

[3.3 The Test Histograml . . . -« o v oot e e 22
l4_Diehard 25
[41 The Original Diehard . .« « o o oo e e 25
[£.2 The Dieharder Modifications . . . « « v v ovvv e 927
I5_Dieharder’s Modular Test Structurd 29
6 Dieharder Extensiond 33
b1 SsTSTestd 36
b2 New Testd 37
|ﬁ,3 Future (Proposed or Planned) lesi;gl 40
[7_Results for Selected Generators 43
[7.0.1 A Good Generator: mt19937.1999 oo 43

[702 Commentd. oo o 72

[71 A Bad Generator: randd 75
[2.2__An Ugly Generator: slated o oo 101

Chapter 1

Introduction

Random numbers are of tremendous value in many computational contexts. In impor-
tance sampling Monte Carlo, random numbers permit the sampling of the relevant part
of an extremely large (high-dimensional) phase space in order to determine (for example)
the thermal equilibrium properties of a physical system near a critical point. In games,
random numbers ensure a unique and fair (in the sense of being unbiased) playing ex-
perience. Random numbers play a critical role in cryptography, which is more or less
the fundamental basis or sine qua non of Internet commerce. Random numbers are of
considerable interest to mathematicians and statisticians in contexts that range from the
purely theoretical to the very much applied.

There is, alas, a fundamental problem with this, and several related sub-problems.
The fundamental problem is that it is not possible to generate truly random numbers
by means of any mathematical algorithm. The very term “random number generator”
(RNG) is a mathematical or computational oxymoron.

Even in physics, sources of true randomness are rare. There is a very, very old argu-
ment about whether even quantum experiments produce results that are truly random
at a fundamental level or whether experimental results in quantum theory that produce
seemingly random outcomes reflect the entropy inherent in the measuring apparatus.
This is a non-trivial problem with no simple or obviously true answer even today, since
it is fundamentally connected to whether the Universe is open or closed. Both relativity
theory and the Generalized Master Equation that is perhaps the most general way of
describing the quantum measurement process of an open system embedded in a closed
quantum universe suggest that what appears to be irreversibility and randomness in lab-
oratory experiments is due to a projection of the stationary quantum description of the
universe onto the much smaller quantum description of the “system” that is supposed
to produce the random result (such as photon emission due to spontaneous decay of an
excited atom into the ground state).

The “randomness” of the apparent result follows from taking a statistical trace over
the excluded degrees of freedom, which introduces what amounts to a random phase

approximation that washes out the actual correlations inherent in the extended fully
correlated state. Focussing on issues of “hidden variables” within any give quantum
subsystem obscures the actual problem, which is strictly the impossibility of treating both
the quantum subsystem being studied and the (necessarily classical) measuring apparatus
(which is really the rest of the quantum mechanical universe) on an equal quantum
mechanical footing. If one does, all trace of randomness disappears as the quantum time
evolution operator for the complete system is fully deterministic.

Ultimately, it seems to be difficult to differentiate true randomness in physical pro-
cesses from mere entropy, a lack of knowledge of some aspect or another of the system.
Only by systematically analyzing a series of experimental results for “randomness” can
one make a judgement on whether or not the underlying process is truly random, or
merely unpredictable.

Note well that unpredictable and random are often used as synonyms, but they are
not really the same thing. A thing may be unpredictable due to entropy — our lack of
the data required to make it predictable. Examples of this sort of randomness abound in
classical statistical mechanics or the theory of deterministic chaos. We will therefore leave
the question about whether any given physical process is in fact random open, a thing
to be experimentally addressed by applying tests for randomness, and not a fundamental
given.

For this reason, purists often refer to software-based RNGs as pseudo-random num-
ber generators to emphasize the fact that the numbers they produce are not, in fact,
“random”. As one can see from the discussion above, hardware-based RNGs are equally
susceptible to being “pseudo” in their randomness or (however unpredictable they might
be) they may well have a distribution that is not perfectly flat and hence does not con-
form to the requirements of an ideal RNG. At the very least they are as likely to need to
be subjected to randomness tests as software generators and should not be assumed to
be “truly random”.

The purpose of Dieharder is to provide a suite of tests, as systematic as possible, to
which “random number generators” of all sorts can be subjected. For this reason we
will, for brevity’s sake, omit the word “pseudo” when discussing RNGs but it should
nevertheless be understood.

Another problem associated with random numbers in the context of modern comput-
ing is that numerical simulations can consume a [lot of e.g. random uniform deviates,
random unsigned integers, random bits, random numbers of all sorts. Simulations on a
large compute cluster can consume close to Avogadro’s number of uniform deviates in
a single extended computation over the course of months to years. Over such a long
sequence, problems can emerge even with generators that appear to pass many tests that
sample only a few millions of random numbers (less than a billion bits, say). Many random
number generators are in fact state-periodic and repeat a single sequence after a certain
number of returns. Older generators often had a very short period. This meant that
simulations that consumed more random numbers than this period in fact reproduced
the same sample sequence over and over again instead of generating the independent,

identically distributed (iid) samples that the author of the simulation probably intended.

A related issue is associated with the dimensionality of the correlation. Many gener-
ators produce numbers that are subtly patterned (e.g. distributed on hyperplanes) but
only in a space of high dimensionality. A number of tests only reveal a lack of random-
ness by constructing a statistic that measures the non-uniformity of the distribution of
random coordinate N-tuplets in an N dimensional space. This non-uniformity can only
be resolved when the space begins to be filled with points at some density. Unfortunately,
the number of points required to fill such a space scales like the power of the dimension,
meaning that it is very difficult to resolve this particular kind of correlation by filling a
space of more than a very few dimensions.

For all of these reasons, the development and implementation of tests for the random-
ness of number sequences produced by various RNGs with real or imagined virtues is an
important job in statistical computation and simulation theory. For roughly a decade,
the most often cited test suite of this sort is one developed by George Marsaglia known as
the “Diehard Battery of Tests of Randomness” [?]. Indeed, a random number generator
has not been thought to be strong unless it “passes Diehard” — it has become the defining
test of randomness, as it were.

This reputation is not undeserved. Diehard contains a number of tests which test
for very subtle non-randomness — correlations or patterns in the numbers produced —
from the bit-sequence level to the level of distributions of uniform deviates. It has not
proven easy for RNGs to pass Diehard, which has made it a relatively strong and lasting
suite of tests. Even so-called “truly random” sources such as hardware RNGs based on
e.g. thermal noise, entropy, and other supposedly “random” electromechanical or even
quantum mechanical processes have been demonstrated to contain subtle non-random
patterning by virtue of failing Diehard.

One weakness of Diehard has been its relative lack of good tests for bitlevel randomness
and cryptographic strength. This motivated the development, by the National Institute
of Standards and Technology (NIST) of the Statistical Test Suite (STS): a Diehard-like
collection of tests of the bitlevel randomness of bit sequences produced by RNGs[?]. There
is small bit of redundancy with Diehard — both include binary rank tests, for example —
but by in large the tests represent an extension of the methodology utilized extensively
in Diehard to look for specific kinds of bitlevel correlations.

In addition to these two well-known suites of tests, there are a number of other
tests that have been described in the literature or implemented in code in various con-
texts. Perhaps the best-known remaining source of such tests is in Knuth’s The Art of
Programming[?], where he devotes an entire section to both the generation and testing of
random numbers. Some of the Diehard and STS tests are described here, for example.

A second weakness in Diehard has been its lack of parametric variability. It has been
used as a standard for RNGs to a fault, rather than being viewed as a tool for exploring
the properties of RNGs in a systematic way. Anyone who actually works with any of the
RNG testers to any significant extent, however, knows that the quality of a RNG is not
such a cut and dried issue. A generator that is, in fact, weak can easily “pass Diehard”

(or at least, pass any given test in Diehard) by virtue of producing p-values that are not
less than 0.01 (or whatever else one determines the cut-off for failure to be). Of course a
good RNG produces such a value one in a hundred trials, just as a bad RNG might well
produce p-values greater than 0.01 98 out of 100 times for any given test size and still,
ultimately be bad.

To put it another way, although many tests in the Diehard suite are quite sensitive
and are capable of demonstrating a lack of randomness in generators with particular kinds
of internal correlations, it lacks the power of clearly discriminating the failures because in
order to increase the discrimination of a test one usually has to increase sample sizes for
the individual tests themselves and impose a Kolmogorov-Smirnov test on the distribution
of p-values that results from many independent runs of the test to determine whether or
not it is uniform. This is clearly demonstrated below — parameterizing Diehard (where
possible) and increasing its power of discrimination is a primary motivation of this work.

The STS suite publication describes this quite elegantly, although it still falls short
when it comes to implementing its tests with a clear mechanism for systematically im-
proving the resolution (ability to detect a given kind of correlation as a RNG failure) and
discrimination (ability to clearly and unambiguously and reproducibly demonstrate that
failure for any given input RNG that does, in fact, possess one of the kinds of correlation
that leads to failure). A strong requirement for this sort of parametric variation to achieve
discrimination is that the test suite integrate any software RNG being tested so that it
can be freely reseeded and so that sequences of random numbers of arbitrary length can
be generated. Otherwise a test may by chance miss a failure that occurs only for certain
seed moduli, or may not be able to generate enough samples within a test or repeat a
test enough times to be able to clearly resolve a marginal failure.

The remaining purpose of this work is to provide a readily available source code
distribution of a universal, modifiable and extensible RNG test suite. Diehard was clearly
copyrighted work of George Marsaglia, but the licensing of the actual program that
implemented the suite (although it was openly distributed from the FSU website for
close to a decade) was far from clear. STS is a government-sponsored NIST publication
and is therefore explicitly in the public domain. Knuth’s various tests are described in
prose text but not implemented in any particular piece of code at all.

In order to achieve the goals of universality, extensibility, and modifiability, it is
essential that a software implementation of a RNG test suite have a very clear public
license that explicitly protects the right of the user to access and modify the source, and
that further guarantees that modifications to the source in turn become part of the open
source project from which they are derived and cannot be “co-opted” into a commercial
product.

These, then, are the motivations for the creation of the Dieharder suite of random
number tests — intended to be the Swiss Army Knife of RNG tests or (if you prefer) the
“last suite you’ll ever wear” as far as RNG testing is concerned. Dieharder is from the
beginning a Gnu Public Licensed (GPL)[?] project and is hence guaranteed to be and
remain an open source toolset. There can be no surprises in Dieharder, and for better

or for worse the code is readily available for all to inspect or modify as problems are
discovered or as individuals wish to experiment with new things.

Dieharder contains all of the diehard tests, implemented wherever possible with vari-
ables that control the size of the sample space per test that contribute to the test’s p-value,
or the number of p-values that contribute to the final test on the distribution of p-values
returned by many independent runs. Dieharder has as a design goal the encapsulation
of all of the STS tests as well in the single consistent test framework. Dieharder will
also implement selected tests from Knuth that thus far have failed to be implemented in
either Diehard or the STS.

Finally, Dieharder implements a timing test (as the cost in CPU time required to
generate a uniform deviate is certainly highly relevant to the process of deciding which
RNG to implement in any given piece of code), various tests invented by the author to
investigate specific ways a generator might fail (documented below) and has a templated
interface for ”user contributed” tests where, basically, anybody can add tests of their
own invention in a consistent way to the suite. These latter tests clearly demonstrate the
extensibility of the suite — it took only a few hours of programming and testing to add a
simple test to the suite to serve as a template for future developers.

Dieharder is tightly integrated with the Gnu Scientific Library (GSL), another GPL
project that provides a universal, modifiable, and extensible numerical library in open
source form. In particular, the GSL contains over 60 RNGs pre-encapsulated in a single
common call environment, so that code can be written that permits any of these RNGs to
be used to generate random numbers in any given block of code at run time by altering
the value of a single variable in the program. Routines already encapsulated include
many well-known generators that fail one or more Diehard tests, as well as several that
are touted as having passed Diehard.

As we shall see, that is a somewhat optimistic assertion — it is rather fairer to say
that Diehard could only rather weakly resolve their failure of certain tests. The GSL also
provides access to various distributions and to other functions that are essential to any
random number generator — the error function or incomplete gamma function, for example
— and that are often poorly implemented in code when programmed by a non-expert. A
final advantage of this integration with the GSL is that the GSL random number interface
is easily extensible — it is fairly straightforward to implement any proposed RNG algorithm
inside the GSL RNG function prototypes and add new generators to the list of generators
that can be selected within the common call framework by means of the runtime RNG
index.

The rest of the paper is organized as follows. In the next section the general method-
ology for testing a RNG is briefly described, both in general and specifically as it is
implemented in Dieharder to achieve its design goals. This section is deliberately written
to be easy to understand by a non-expert in statistics as conceptually testing is very
simple. Diehard is then reviewed in some detail, and the ways the Diehard tests are
extended in Dieharder are documented. Dieharder’s general program design is then de-
scribed, with the goal of informing individuals who might wish either to use Dieharder

as is to test the generators already implemented in the GSL for their suitability for some
purpose or to help guide individuals who wish to write their own tests or implement their
own generators within its framework. A section then describes the non-Diehard tests thus
far implemented (a selection subject to change as new tests are ported from e.g. the STS
or the literature or invented and added). Finally the results of applying the test suite to
a few selected RNGs are presented, demonstrating its improved power of discrimination.

Chapter 2

Testing Random Number
Generators

The basic idea of testing a RNG is very simple. Choose a process that uses as input a
sequence of random numbers (in the form of a stream of bits e.g. 10100101..., a stream
of integers in some range e.g. 12 17 4 9 1..., a stream of uniform deviates e.g. 0.273,
0.599, 0.527, 0.981, 0.194...) and that creates as a result a number or vector of numbers
that are known if the sequence of numbers used as inputs is, in fact, random according
to some measure of randomness.

For example, if one adds ¢ uniform deviates (double precision random numbers from
the range [0,1)) one expects (on average) that the mean value of the sum would be
w = 0.5t. For large ¢, the means for many independent, identically distributed (7id) sums
thus formed should be normally distributed (from the Central Limit Theorem, (CLT))
with a standard deviation of o = 1/t/12 (from the properties of the uniform distribution).

Each such sum numerically generated with a RNG therefore makes up an experiment.
Suppose the value of the sum for ¢ samples is z. The probability of obtaining this value
for the mean from a perfect RNG (and actual random sequence) is determined according
to the CLT from the error function as:

p = erfe ('i\;g') (2.1)

This is the p-value associated with the null hypothesis. We assume that the generator
is good, create a statistic based on this assumption, determine the probability of obtain-
ing that value for the statistic if the null hypothesis is correct, and then interpret the
probability as success or failure of the null hypothesis.

If the p-value is very, very low (say, less than 10~%) then we are pretty safe in rejecting
the null hypothesis and concluding that the RNG is “bad”. We could be wrong, but the
chances are a million to one against a good generator producing the observed value of
p. This is really the only circumstance that leads to a relatively unambiguous conclusion

15

concerning the RNG. But suppose it isn’t so close to 0. Suppose, in fact, that p for the
trial is a perfectly reasonable value. What can we conclude then?

By itself the p-value from a single trial tells us little in most cases. Suppose it is 0.230.
Does this mean that the RNG is good or bad? The correct answer is that it does not tell
us that the RNG is likely to be bad. It is (if you prefer) insufficient evidence to reject
the null hypothesis, but it is also insufficient to cause us to accept the null hypothesis as
proven. That is, it is incorrect to assert that it means that the RNG is in fact “good”
(unbiased) on the basis of this single test.

After all, suppose that we repeated the test and got 0.230 a second time, and then
repeated it a third time and got 0.241, and repeated it a hundred more times and got
p-values that consistently lay within 0.015 or so of 0.230! In that case we’d be very safe
in concluding that the RNG was a bad one that (for the given value of t) always summed
up to pretty much the same number that is distributed incorrectly. We might well reject
the null hypothesis.

Suppose instead that we got 0.230, 0.001, 0.844, 0.569, 0.018, 0.970... as values for
p. Once again, it is not at all obvious from looking at this whether we should conclude
that the generator is good or bad. On the one hand, one of these values only occurs once
in roughly 1000 trials by chance, and another occurs only one in maybe 50 trials — it
seems unlikely that they’d be in a sequence of p-values. On the other hand, it isn’t that
unlikely. One in a thousand chances happen, especially given some unknown number of
tries! Given enough tries they are nearly certain to happen. Did they “just happen” this
time, or are they indicative of a problem in the generator? It is difficult to know for sure.

What we would like to do is take the guesswork out of our decision process. What
is the probability that this particular sequence of p-values might occur if the underlying
distribution of p-values is in fact uniform (as a new null hypothesis)? To answer this
we apply a Kolmogorov-Smirnov (KS) test to the p-values observed to determine the
probability of obtaining them in a random sampling of a uniform distribution. This is
itself a p-value, but now it is a p-value that applies to the entire series of iid trials.

This testing process now gives us two parameters we can tweak to obtain an unam-
biguous answer — one that is very, very low, consistently — or not. We can increase t,
which increases the mean value relative to o and makes systematic deviations from the
mean probability of 0.5 more obvious (but which makes a localized non-random cluster-
ing of values for small sample sizes less obvious) or we can increase the number of 4id
trials to see if the distribution of p-values for the sample size ¢t we're already using is not
uniform. In either case, once we discover a combination of ¢ and the number of trials that
consistently yields very low overall p-values (visible, as it were, as the p of the distribution
of p-values of the distribution of p-values of the experiment) we can safely reject the null
hypothesis. If we cannot find such a set of parameters, we are at last tentatively justified
in concluding that the RNG passes our very simple test.

This does not mean that the null hypothesis is correct. It just means that we cannot
prove it to be incorrect even though we worked pretty hard trying to do just that!

This is the basic idea of nearly all RNG testers. Some tests generate a single number,

normally distributed. Other tests generate a vector of numbers, and we might determine
the p-value of the vector from the x? distribution according to the number of degrees of
freedom represented in the vector (which in many cases will be smaller than the number
of actual numbers in the vector). A few might generate numbers or vectors that are not
normally distributed (and we might have to work very hard in these cases to generate a
p-value — the KS test itself is just such a case).

In all cases in Dieharder, the p-values from any small sample of iid tests is held
to be suspect in terms of supporting the acceptance or rejection of the null hypothesis
unless and until a KS test of the uniformity of the distribution of p itself yields an
unambiguous p-value in a challenging application of the test method. In most cases
it would be considered to be worthwhile to play with the parameters described above
(number of samples, number of trials) to see if the p-value returned can be made to
consistently exhibit failure with a very high degree of confidence, making at least the
for-cause rejection of the null hypothesis a very safe bet.

There is one test in Dieharder that does not generate a p-value per se. The bit persis-
tence test is a bit-level test that basically does successive exclusive-or tests of succeeding
(e.g.) unsigned integers returned by a RNG. After a remarkably few trials, the result of
this is a bitmask of all bits that did not change from the value 1 throughout the sequence.
A similar process is used to identify bit positions that a value of 0 that does not change.

This test is actually quite useful (and is very fast). There are a number of generators
that (for some seeds) have less than e.g. 32 bits that vary. In some cases the generators
have fixed bits in the least significant portion of the number. in some cases they have fixed
bits in the high end, or perhaps return a positive signed integer (31 bits) instead of 32.
In any of these cases it is worthwhile to identify this very early on in the testing process
as some of these problems will inevitably make the RNG fail later tests, often quite badly.
If a test permits the number of significant bits in a presumed random integer to be varied
or masked, one can even use the information to perform tests on the significant part of
the numbers returned.

Chapter 3
Evaluating p-values

Tests used in Dieharder can produce a variety of statistics that can be used to produce
a p-value

3.1 Xtest — A Single Expected Value

3.2 Vtest — A Vector of Expected Values

It is appropriate to use a Vtest to evaluate the p-value of a single trial test (consisting as
usual of tsamples iid samples generated using a RNG presumed good according to Hy) in
Dieharder when the test produces a related vector of statistics, such as a set of observed
frequencies — the number of samples that turned out to be one of a finite list of possible
discrete target values.

A classic example would be for a simulated die — generate tsamples random integers
in in the range 1-6. For a “perfect” (unbiased) die, an Hy die as it were, each integer
should should occur with probability P[i] = 1/6 for i € [1,6]. One therefore expects to
observe an average of tsamples/6 in each bin over many runs of tsamples each. Of course
in any given random trial with a ”perfect” die one would usually observe bin frequencies

¢

that vary somewhat from this in integer steps.

This variation can’t be too great or too small. Obviously observing all 6’s in a large
trial (tsamples > 1) would suggest that the die was "loaded” and not truly random
because it is pretty unlikely that one would roll (say) twenty sixes in a row with an
unbiased die. It can happen, of course — one in about 3.66 x 10'® trials, and tsamples = 20
is still pretty small.

It is less obvious that observing ezactly tsamples/6 = 1,000,000 in all bins over (say)
tsamples = 6,000,000 rolls would ALSO suggest that the die was not random, because
there are so many more ways for at least some fluctuation to occur compared to this very

19

special outcome.

The chi? distribution counts these possibilities once and for all for vector (binned)
outcomes and determines the probability distribution of observing any given excursion
from the expected value if the die is presumed to be an unbiased perfect die. From this
one can determine the probability of having observed any given pattern of outcomes in a
single trial subject to the null hypothesis Hy — the p-value.

Evaluating chi? and p-value in a Vtest depends on the number of degrees of freedom
in the vector — basically how ”related” the bin events are. Generally speaking, there is
always at least one constraint, since the total number of throws of the die is tsamples,
which must therefore equal the sum of all the bin frequencies. The sixth frequency is is
therefore not an independent quantity (or in general, the contents of the nth (last) bin is
not independent of the contents of the n — 1 bins preceding it), so the default number of
degrees of freedom is at most n — 1.

However, the number of degrees of freedom in the chi? distribution is tricky — it
can easily be less than this if the expected distribution has long "tails” — bins where
the expected value is approximately zero. The binned data only approaches the chi?
distribution for bins that are have an expected value greater than (say) 10. The code
below enforces this constraint, but in many tests (for example, the Greatest Common
Denominator test) there may be a lot of weight aggregated in the neglected tail (of
greatest common denominator frequencies for the larger factors). In these cases it is
necessary to take further steps to pass in a ”good” vector and not get an erroneous p-
value. A common strategy is to summing the observed and expected values over the
tail(s) of the distribution at some point where the bin frequencies are still larger than the
cutoff, and turn them all into a single bin that now has a much greater occupancy than
the cutoff.

Ultimately, the p-value is evaluated as the incomplete gamma function for the observed
chi? and either an input number of degrees of freedom or (the default) number of bins that
have occupancy greater than the cutoff (minus 1). Numerically evaluating the incomplete
gamma function correctly (in a way that converges efficiently to the correct value for all
ranges of its arguments) is actually not trivial to do and is often done incorrectly in
homemade code. This is one place where using the GSL is highly advantageous — its
routines were written and are regularly used and tested by people who know what they
are doing, so its incomplete gamma function routine is relatively reliable and efficient.

Dieharder attempts to standardize as many aspects of performing a RNG test as
possible, so that there are relatively few things to debug or validate. A Vtest therefore
has a standardized “Vtest object” associated with it — a struct defined in Vtest.h as:

typedef struct {
unsigned int nvec; /* Length of x,y vectors */
unsigned int ndof; /* Number of degrees of freedom, default nvec-1
double *x; /* Vector of measurements */
double *y; /* Vector of expected values */
double chisqg; /* Resulting Pearson’s chisq */

double pvalue; /* Resulting p-value */
} Vtest;

There are advantages associated with making this data struct into an ”object” of sorts
that is available to all tests, but not (frankly) to the point where its contents are opaqu
The code below thus contains simple constructor and destructor routines that can be used
to allocate all the space required for a Vtest in one call, then free the allocated space in
just the right order to avoid leaking memory.

This can be done by hand, of course, and some tests involve vectors of Vtests and
complicated things and may even do some of this stuff by hand, but in general this should
be avoided whereever possible and it is nearly always possible.

In summary, the strategy for a Vtest involves the following very generic steps, clearly
visible in the actual code of many tests:

e Create/Allocate the Vtest struct(s) required to hold the vector of test outcomes.
Note that there may be a vector of Vtests generated within a single test, if you like,
if you are a skilled coder.

e Initialize the expected/target values, e.g

for(i=0;i<nv;i++){
vtest->y[i] = tsamples*p[i];
}

This can be done at any time before evaluating the trial’s p-value.

e Run the trial. For example, loop tsamples times, generating as a result a bin index.
Increment that bin.

for(t=0;t<tsamples;t++){
index = make_distributed_number_randomly();
vtest->x[index]++;

}

Note again that there may well be some logic required to handle e.g. bin tails,
evaluate the p[i]’s (or they may be input as permanent data from the test include
file). Or the test statistic may not be a bin frequency at all but some other number
for which a Pearson x? is appropriate.

e Call Vtest_eval() to transform the test results into the trial p-value.

e As always, the trial is repeated psamples times to generate a vector of p-values. As
we noted above, any given trial can generate any given p-value. If you run a trial

1Discussion of this point ultimately leads one into the C vs C++ wars. rgb is an unapologetic C-coder,
but thinks that objects can be just lovely when they can be as opaque as you like when programming,
not as opaque as the compiler designer thought they should be. ’Nuff said.

enough times, you will see very small p-values occur, very rarely. You will also see
very large p-values, very rarely. In fact, you should on average see all p-values,
equally rarely. p itself should be distributed uniformly. To see if this happened
within the limits imposed by probability and reason, we subject the distribution of
p to a final Kolmogorov-Smirnov Test that can reveal if the RNG produced results
that were (on average) too good to be random, too bad to be random, or just right
to be randomlq.

3.2.1 Kolmogorov-Smirnov Test

A Kolmogorov-Smirnov (KS) test is one that computes how much an observed probability
distribution differs from a hypothesized one. Of course this isn’t very useful — all of the
routines used to evaluate test statistics do precisely the same thing. Furthermore, it isn’t
terribly easy to turn a KS result into an actual p-value — it tends to be more sensitive to
one end or the other of an empirical distribution and has other difﬁcultiesﬁ.

For that reason, the KS statistic for the uniform distribution is usually evaluated
with the Anderson-Darling goodness-of-fit test. Anderson-Darling KS is used throughout
Diehard, for example, and it is similarly used in Dieharder , but to a much higher degree.
Note well that a final KS test on a large set (at least 100) of trial p-values is the essential
last step of almost any Dieharder test. It is otherwise simply impossible to look at p from
a single trial alone and assess whether or not the test “fails” unless that p-value is very,
very low. Many of the original Diehard tests generated only a very few p-values (1-20)
and “passed” many RNGs that in fact Dieharder fails with a very obvious (in retrospect)
non-uniformity in the final distribution of p. Some of its tests were also flawed (for
example, the opermb test) but the flaw was only visible if one rand the test many times
and studied the distribution of p with a KS test.

3.3 The Test Histogram

Although a KS test provides an objective and mathematically justified p-value for the
entire test series, the human eye and human judgement are invaluable aids in the process
of obtaining an unambiguous result for any test and for evaluating the quality of success
or failure. For this reason Dieharder also presents a visible histogram of the final p-value
distribution.

In the ASCII (text-based) version of Dieharder this histogram is necessarily rather
crude — it presents binned deciles of the distribution in an autoscaling graph. Nevertheless,
it makes it easy to see why the p-value of a test series is small. Sometimes it is obvious
— because all of the p-values are near zero because the RNG egregiously fails the test
in every trial. Other times it is very subtle — the test series produces p-values with a

2Think of it as “The Goldilocks Test”.
3See for example the remarks at
http://www.itl.nist.gov/div898 /handbook/eda/section3/eda3bg.htm

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm

slight bias towards one end or the other of the region, nearly flat, that resolves into an
unambiguous failure only when the number of trials contributing p-values is increased to
as many as 500 or 1000.

Here one has to judge carefully. Such an RNG isn’t very bad with respect to the test
at issue — one has to work quite hard to show that it fails at all. Many applications might
be totally insensitive to the small deviations from true randomness thus revealed.

Others, however, might not. Modern simulations use a lot of random numbers and
accumulate a lot of samples. If the statistic being sampled is “like” the one that fails the
final KS test, erroneous results can be obtained.

Usually it is fairly obvious when a test is marginal or likely to fail on the basis of a
mix of the histogram and final KS p-value. If the latter is low, it may mean something or
it may mean nothing — visible inspection of the histogram helps one decide which. If it
might be meaningful, usually repeating the test (possibly with a larger number of p-values
used in the KS test and histogram) will usually suffice to make the failure unambiguous
or (alternatively) show that the deviations in the first test were not systematic and the
RNG actually does not fail the testH.

4Noting that we carefully refrain from asserting that Dieharder is a test suite that can be passed. The
null hypothesis, by its nature, can never be proven to be true, it can only fail to be observed to fail. In
this it greatly resembles both life and science: the laws of inference generally do not permit things like
the Law of Universal Gravitation to be “proven”, the best that we can say is that we have yet to observe
a failure. Dieharder is simply a numerical experimental tool that can be used empirically to develop
a degree of confidence in any given RNG, not a “validation” tool that proves that any given RNG is

suitable for some purpose or another.

Chapter 4

Diehard

4.1 The Original Diehard

The Diehard Battery of Random Number Tests consists of the following individual tests:

1. Birthdays

2. Overlapping 5 Permutations

3. 32x32 Binary Rank

4. 6x8 Binary Rank

5. Bitstream

6. Overlapping Pairs Sparse Occupance (OPSO)
7. Overlapping Quadruples Sparse Occupance (OQSO)
8. DNA

9. Count the 1s (stream)
10. Count the 1s (byte)
11. Parking Lot
12. Minimum Distance (2D Spheres)
13. 3D Spheres (minimum distance)
14. Squeeze
15. Sums

16. Runs

25

17. Craps

The tests are grouped, to some extent, in families when possible; in particular the Binary
Rank tests are similar, the Bitstream, OPSO, OQSO and DNA tests are very similar, as
are the Parking Lot, the Minimum Distance, and the 3d Spheres tests.

Nevertheless, one reason for the popularity of Diehard is the diversity of the kinds
of correlations these tests reveal. They test for raw imbalances in the random numbers
generated; they test for long and short distance autocorrelations; there are tests that will
likely fail if a generator distributes points on 2 or 3 dimensional hyperplanes, there are
tests that will fail if the generator is not random with respect to quite complex conditional
patterns (such as those required to win a game of craps).

The tests are not without their weaknesses, however. One weakness is that (as im-
plemented in Diehard) they often utilize partially overlapping sequences of numbers to
increase the number of “samples” one can draw from a relatively small input file of ran-
dom numbers. Because they strictly utilize file-based random number sources, it is not
easy to generate more random numbers if the number in the file turns out not to be
adequate for any given test.

Diehard has no adjustable parameters — it was written to be a kind of a “benchmark”
that would give you a pass or fail outcome per test per generator, not a testing tool that
could be manipulated looking for an elusive failure or trying to resolve a marginal failure.

Many of the tests in Diehard had no concluding KS test (or had a KS test based on a
very small number of iid p-values and were hence almost as ambiguous as a single p-value
would be unless the test series was run repeatedly on new files full of potential rands from
the same generator.

Diehard seems more focussed on validating relatively small files full of random numbers
than it is on validating RNGs per se that are capable of generating many orders of
magnitude more random numbers in far less time than a file can be read in and without
the overhead or hassle of storing the file.

A final criticism of the original Diehard program is that, while it was freely dis-
tributed, it was written in Fortran. Fortran is not the language of choice for programs
written to run under a Unix-like operating system (such as Linux), and the code was not
well structured or adequately commented even for fortran, making the understanding or
modification of the code difficult. It has subsequently been ported to C[?] with somewhat
better program structuring and commenting. Alas, both the original sources and the port
are very ambiguous about their licensing. No explicit licensing statement occurs in the
copyrighted code, and both the old diehard site at Florida State University and the new
one at the Center for Information Security and Cryptography at the University of Hong
Kong have (or had, in the case of FSU) distinctly commercial aspects, offering to sell one
a CD-ROM with many pretested random numbers and the diehard program on it.

4.2 The Dieharder Modifications

Dieharder has been deliberately written to try to fix most of these problems with Diehard
while preserving all of its tests in default forms that are at least as functional as they are
in Diehard itself. To this end:

e All Dieharder Diehard tests have an outcome based on a single p-value from a KS
test of the uniformity of many p-values returned by individual runs of each basic
test.

e All Dieharder tests have an adjustable parameter controlling the number of indi-
vidual test runs that contribute p-values to the final KS test (with a default value
of 100, much higher than any of the Diehard tests).

e All Dieharder tests can optionall generate a simple histogram of these p-values so
that their uniformity (or lack of it) can be visually assessed. The human eye is very
good at identifying potentially significant patterns of deviation from uniformity,
especially from several sequential runs of a test.

e Many of the basic Diehard tests in Dieharder that have a final test statistic that is
a computable function of the number of samples now have the number of samples
as an adjustable parameter. Just as in the example above, one can increase or
decrease the number of samples in a test and increase or decrease the number of
test results that contribute to the final KS p-value. However, some Diehard tests
to not permit this kind of variation, at least without a lot more work and the risk
of a loss of resolution without warning.

o All tests are integrated with GSL random number generators and use GSL functions
(where possible) that are thoroughly tested and supported by experts. For example,
Dieharder uses GSL versions of the error function, the incomplete gamma function,
or to evaluate a binomial distribution of outcomes for some large space to use as a
x? target vector. This presumably increases the reliability and maintainability of
the code, and certainly increases its speed and flexibility relative to file based input.

e File based random number input is still possible in a number of formats, although
the user should be aware that the (default) use of larger numbers of samples per
test and larger numbers of tests per KS p-value requires far more random numbers
and therefore far larger files than Diehard. If an inadequate number of random
numbers is provided in a file, then (to avoid a time-consuming crash) it is auto-
matically rewound mid-trial (and the rewind count recorded in the trial output as
a warning). This, in turn, introduces a rather obvious sort of correlation that can
lead to incorrect results!

e Certain tests which had additional numbers that could be parameterized as test
variables were rewritten so that those variables could be set on the command line
(but still default to the Diehard defaults, of course).

e Dicharder tests are modularized — they are very nearly boilerplate objects, which
makes it very easy to create new tests or work on old tests by copying or otherwise
using existing tests as templates.

e All code was completely rewritten in well-commented C without direct reference to
or the inclusion of either the original fortran code or any of the various attempted
C ports of that code. Whereever possible the rewrite was done strictly on the
basis of the prose test description. When that was not possible (because the prose
description was inadequate to completely explain how to generate the test statistic)
the original fortran Diehard code was examined to determine what test statistic
actually was but was then implemented in original C. Tabular data and parametric
data from the original code was reused in the new code, although of course it was
not copied per se as a functional block of code.

e This code is packaged to be RPM installable on most Linux systems. It is also
available as a compressed tar archive of the sources that is build ready on most
Unix-like operating systems, subject only to the availability of the GSL on the
target platform.

e The Dieharder code is both copyrighted and 100% Gnu Public Licensed — anyone
in the world can use it, resell it, modify it, or extend it — as long as they obey the
well-known terms of the license.

As one can easily see, Dieharder has significantly extended the parametric utility of the
original Diehard program (and thereby considerably increased its ability to discriminate
marginal failures of many of the tests). It has done so in a clean, easy to build, publically
licensed format that should encourage the further extension of the Dieharder test suite.

Next, let us look at the modular program design of Dieharder to see how it works.

Chapter 5

Dieharder’s Modular Test
Structure

Diehard’s program organization is very simple. There is a toplevel program shell that
parses the command line and initializes variables, installs additional (user added) RNGs
so that the GSL can recognize them, and executes the primary work process. That process
either executes each test known to Dieharder, one at a time, in a specific order or runs
through a case switch to execute a single test. In the event that all the tests are run
(using the -a switch), most test parameters are ignored and a set of defaults are used.
These standard parameters are chosen so that the tests will be “reasonably” sensitive
and discriminating and hence can serve as a comparative RNG performance benchmark
on the one hand and as a starting point for the parametric exploration of specific tests
afterwards.

A Dieharder test consists of three subroutines. These test are named according to the
scheme:

diehard_birthday()
diehard_birthday_test()
help_diehard_birthday()

(collected into a single file, e.g. diehard birthday.c, for the Diehard Birthday’s test).
These routines, together with the file diehard birthday.h, and suitable (matching) pro-
totypes and enums in the program-wide include file dieharder.h, constitute a complete
test.

diehard birthday.h contains a test struct where the test name, a short test descrip-
tion, and the two key default test parameters (the number of samples per test and number
of test runs per KS p-value) are specified and made available to the test routines in a
standarized way. This file also can contain any test-specific data in static local variables.

The toplevel routine, diehard birthday (), is called from the primary work routine

29

executed right after startup if the test or is explicitly selected or the -a flag is given on the
command line. It is a very simple shell for the test itself — it examines how it was started
and if appropriate saves the two key test parameters and installs its internal default values
for them, it allocates any required local memory used by the test (such as the vector that
will hold the p-values required by the final KS test), it rewinds the test file if the test
is using file input of random numbers instead of one of the generators, it prints out a
standardized test header that includes the test description and the values of the common
test parameters, and calls the main sampling routine. This routine calls the actual test
routine diehard _birthday_test () which evaluates and returns a single p value and stores
it in ks_pvalue, the vector of p values passed to the final KS test routine. When the
sample routine returns, a standard test report is generated that includes a histogram of
the obtained values of p, the overall p-value of the test from the final KS test, and a
tentative “conclusion” concerning the RNG.

The workhorse routine, diehard birthday test(), is responsible for running the
actual test a single time to generate a single p-value. It uses for this purpose built-in
data (e.g. precomputed values for numbers used in the generation of the test statistic)
and parameters, common test variable parameters (where possible) such as the number
of samples that contribute to the test statistic or user-specified parameters from the
command line, and of course a supply of random numbers from the specified RNG or file.

As described above, a very typical test uses a transformation and accumulation of the
random numbers to generate a number (or vector of numbers) whose expected value (as
a function of the test parameters) is known and to compare this expected value with the
value “experimentally” obtained by the test run in terms of o, the standard deviation
associated with the expected value. This is then straightforward to transform into a p-
value — the probability that the experimental number was obtained if the null hypothesis
(that the RNG is in fact a good one) is correct. This probability should be uniformly
distributed on the range [0,1) over many runs of the test — significant deviations from
this expected distribution (especially deviations where the test p-values are uniformly
very small) indicate failure of the RNG to support the null hypothesis.

The final routine, help_diehard birthday (), is completely standardized and exists
only to allow the test description to be conveniently printed in the test header or when
“help” for the test is invoked on the command line.

Dieharder provides a number of utility routines to make creating a test easier. If
a test generates a single test statistic, a struct can be defined for the observed value,
the expected value, and the standard deviation that can be passed to a routine that
transforms it into a p-value in an entirely standard way using the error function. If a
test generates a vector of test statistics that are expected to be distributed according to
the x* distribution (independently normal for each degree of freedom for some specified
number of degrees of freedom, typically one or two less than the number of participating
points) there exists a set of routines for creating or destroying a struct to hold e.g. the
vector of expected values or experimentally obtained values, or for evaluating the p-value
of the experiment from this data.

A set of routines is provided for performing bitlevel manipulations on bitstrings of
specified length such as dumping a bit string to standard output so it can be visually
examined, extracting a set of n < m bits from a string of m bits on a ring (so that the
m — 1 bit can be thought of as wrapping around to be adjacent to the 0 bit), starting at a
specified offset. These routines are invaluable in constructing bit-level tests of randomness
both from Diehard and from the STS (which spends far more time investigating bit-level
randomness than does Diehard). A routine is provided to extract an unpredictable (but
not necessarily uncorrelated) seed from the entropy-based hardware generator provided
by e.g. the Linux operating system and others like it (/dev/random) if available, and
in general the selected software random number generator is reseeded one or more times
during the course of a test as appropriate.

This behavior can be overridden by specifying a seed on the command line that is
then used throughout all tests to obtain a standard and reproducible result (useful for
re-validating a test after significant modifications while debugging).

Last, a simple timing harness is provided that is used to make it easy to time any
installed RNG. There are many ways to take a bad but fast RNG and improve it by using
the not terribly random numbers it generates to generate new, much more random num-
bers. The catch is that these methods invariably require many of the former to generate
one of the latter and take more time. There is an intrinsic trade-off between the speed of
a RNG (measured in how many random numbers per second one can generate) and their
quality. Since the time it takes to generate a random number is an important parameter
to any program design process that consumes a lot of random numbers (such as nearly
any stochastic numerical simulation, e.g. importance sampling Monte Carlo), Dieharder
permits one to search through the library of e.g. GSL random number generators and
select one that is “random enough” as far as the tests are concerned but still fast enough
that the computation will complete in an acceptable amount of time.

Chapter 6

Dieharder Extensions

As noted in the Introduction, Dieharder is intended to develop into a “universal” suite
of RNG tests, providing a consistently controllable interface to all commonly accepted
suites of tests (such as Diehard and STS), to specific tests in the literature that are not
yet a standard feature of existing suites (e.g. certain tests from Knuth), and to new tests
that might be developed to challenge RNGs in specific ways, for example in ways that
might be expected to be relevant to specific random number consuming applictions.

This is an open-ended task, not one that is likely to ever be “finished”. As computer
power in all dimensions continues to increase, the demands on RNGs supplying e.g.
numerical simulations will increase as well, and tests that were perfectly adequate to
test RNGs for applications that would consume at most (say) 10*2 uniform deviates are
unlikely to still suffice as applications consume (say) 10'® or more uniform deviates, at
least without the ability to parametrically “crank up” the rigorousness of any given test
to reveal relevant flaws. Cryptographic applications that were “secure” a decade ago
(given the computer power available at that time to attempt to crack them) may well
not be secure a decade from now, when Moore’s Law and the advent of readily available
cluster computing resources can bring perhaps a million times as many cycles per second
to bear on the problem of cracking the encryption.

In order to remain relevant and useful, a RNG tester being used to determine the
suitability of a RNG for any purpose, be it gaming, simulation, or cryptography, has to
be relatively simple to scale up to the new challenges presented by the changing landscape
of computing.

Another feature of RNG testers that would be very desireable to those seeking to test
an RNG to determine its suitability for use in some given application would be sequences
of tests that validate certain statistical properties of a given RNG systematically. Right
now it is very difficult to interpret the results of e.g. Diehard or many of the STS tests.
If a RNG fails (say) the Birthdays test or the Overlapping 5-Permutations test when
pushed to it by increasing test parameters, what does that say about the cryptographic
strength of the generator? What does it say about the suitability of the RNG for gaming,

33

for numerical simulation, to drive a state lottery system?

It is entirely possible, after all, to pass some Diehard or STS tests and fail others,
so failure in some test is not a universal predictor of the unsuitability of the RNG for
all purposes. Unfortunately there is little theoretical guidance connecting failure of any
given test and suitability for any given purpose.

Furthermore, there is little sense of analysis in RNG