WebM Codec SDK
vp9_spatial_svc_encoder
1 /*
2  * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
3  *
4  * Use of this source code is governed by a BSD-style license
5  * that can be found in the LICENSE file in the root of the source
6  * tree. An additional intellectual property rights grant can be found
7  * in the file PATENTS. All contributing project authors may
8  * be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 /*
12  * This is an example demonstrating how to implement a multi-layer
13  * VP9 encoding scheme based on spatial scalability for video applications
14  * that benefit from a scalable bitstream.
15  */
16 
17 #include <math.h>
18 #include <stdarg.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <time.h>
22 
23 #include "../args.h"
24 #include "../tools_common.h"
25 #include "../video_writer.h"
26 
27 #include "../vpx_ports/vpx_timer.h"
28 #include "./svc_context.h"
29 #include "vpx/vp8cx.h"
30 #include "vpx/vpx_encoder.h"
31 #include "../vpxstats.h"
32 #include "vp9/encoder/vp9_encoder.h"
33 #include "./y4minput.h"
34 
35 #define OUTPUT_RC_STATS 1
36 
37 #define SIMULCAST_MODE 0
38 
39 static const arg_def_t outputfile =
40  ARG_DEF("o", "output", 1, "Output filename");
41 static const arg_def_t skip_frames_arg =
42  ARG_DEF("s", "skip-frames", 1, "input frames to skip");
43 static const arg_def_t frames_arg =
44  ARG_DEF("f", "frames", 1, "number of frames to encode");
45 static const arg_def_t threads_arg =
46  ARG_DEF("th", "threads", 1, "number of threads to use");
47 #if OUTPUT_RC_STATS
48 static const arg_def_t output_rc_stats_arg =
49  ARG_DEF("rcstat", "output_rc_stats", 1, "output rc stats");
50 #endif
51 static const arg_def_t width_arg = ARG_DEF("w", "width", 1, "source width");
52 static const arg_def_t height_arg = ARG_DEF("h", "height", 1, "source height");
53 static const arg_def_t timebase_arg =
54  ARG_DEF("t", "timebase", 1, "timebase (num/den)");
55 static const arg_def_t bitrate_arg = ARG_DEF(
56  "b", "target-bitrate", 1, "encoding bitrate, in kilobits per second");
57 static const arg_def_t spatial_layers_arg =
58  ARG_DEF("sl", "spatial-layers", 1, "number of spatial SVC layers");
59 static const arg_def_t temporal_layers_arg =
60  ARG_DEF("tl", "temporal-layers", 1, "number of temporal SVC layers");
61 static const arg_def_t temporal_layering_mode_arg =
62  ARG_DEF("tlm", "temporal-layering-mode", 1,
63  "temporal layering scheme."
64  "VP9E_TEMPORAL_LAYERING_MODE");
65 static const arg_def_t kf_dist_arg =
66  ARG_DEF("k", "kf-dist", 1, "number of frames between keyframes");
67 static const arg_def_t scale_factors_arg =
68  ARG_DEF("r", "scale-factors", 1, "scale factors (lowest to highest layer)");
69 static const arg_def_t min_q_arg =
70  ARG_DEF(NULL, "min-q", 1, "Minimum quantizer");
71 static const arg_def_t max_q_arg =
72  ARG_DEF(NULL, "max-q", 1, "Maximum quantizer");
73 static const arg_def_t min_bitrate_arg =
74  ARG_DEF(NULL, "min-bitrate", 1, "Minimum bitrate");
75 static const arg_def_t max_bitrate_arg =
76  ARG_DEF(NULL, "max-bitrate", 1, "Maximum bitrate");
77 static const arg_def_t lag_in_frame_arg =
78  ARG_DEF(NULL, "lag-in-frames", 1,
79  "Number of frame to input before "
80  "generating any outputs");
81 static const arg_def_t rc_end_usage_arg =
82  ARG_DEF(NULL, "rc-end-usage", 1, "0 - 3: VBR, CBR, CQ, Q");
83 static const arg_def_t speed_arg =
84  ARG_DEF("sp", "speed", 1, "speed configuration");
85 static const arg_def_t aqmode_arg =
86  ARG_DEF("aq", "aqmode", 1, "aq-mode off/on");
87 static const arg_def_t bitrates_arg =
88  ARG_DEF("bl", "bitrates", 1, "bitrates[sl * num_tl + tl]");
89 static const arg_def_t dropframe_thresh_arg =
90  ARG_DEF(NULL, "drop-frame", 1, "Temporal resampling threshold (buf %)");
91 static const struct arg_enum_list tune_content_enum[] = {
92  { "default", VP9E_CONTENT_DEFAULT },
93  { "screen", VP9E_CONTENT_SCREEN },
94  { "film", VP9E_CONTENT_FILM },
95  { NULL, 0 }
96 };
97 
98 static const arg_def_t tune_content_arg = ARG_DEF_ENUM(
99  NULL, "tune-content", 1, "Tune content type", tune_content_enum);
100 static const arg_def_t inter_layer_pred_arg = ARG_DEF(
101  NULL, "inter-layer-pred", 1, "0 - 3: On, Off, Key-frames, Constrained");
102 
103 #if CONFIG_VP9_HIGHBITDEPTH
104 static const struct arg_enum_list bitdepth_enum[] = {
105  { "8", VPX_BITS_8 }, { "10", VPX_BITS_10 }, { "12", VPX_BITS_12 }, { NULL, 0 }
106 };
107 
108 static const arg_def_t bitdepth_arg = ARG_DEF_ENUM(
109  "d", "bit-depth", 1, "Bit depth for codec 8, 10 or 12. ", bitdepth_enum);
110 #endif // CONFIG_VP9_HIGHBITDEPTH
111 
112 static const arg_def_t *svc_args[] = { &frames_arg,
113  &outputfile,
114  &width_arg,
115  &height_arg,
116  &timebase_arg,
117  &bitrate_arg,
118  &skip_frames_arg,
119  &spatial_layers_arg,
120  &kf_dist_arg,
121  &scale_factors_arg,
122  &min_q_arg,
123  &max_q_arg,
124  &min_bitrate_arg,
125  &max_bitrate_arg,
126  &temporal_layers_arg,
127  &temporal_layering_mode_arg,
128  &lag_in_frame_arg,
129  &threads_arg,
130  &aqmode_arg,
131 #if OUTPUT_RC_STATS
132  &output_rc_stats_arg,
133 #endif
134 
135 #if CONFIG_VP9_HIGHBITDEPTH
136  &bitdepth_arg,
137 #endif
138  &speed_arg,
139  &rc_end_usage_arg,
140  &bitrates_arg,
141  &dropframe_thresh_arg,
142  &tune_content_arg,
143  &inter_layer_pred_arg,
144  NULL };
145 
146 static const uint32_t default_frames_to_skip = 0;
147 static const uint32_t default_frames_to_code = 60 * 60;
148 static const uint32_t default_width = 1920;
149 static const uint32_t default_height = 1080;
150 static const uint32_t default_timebase_num = 1;
151 static const uint32_t default_timebase_den = 60;
152 static const uint32_t default_bitrate = 1000;
153 static const uint32_t default_spatial_layers = 5;
154 static const uint32_t default_temporal_layers = 1;
155 static const uint32_t default_kf_dist = 100;
156 static const uint32_t default_temporal_layering_mode = 0;
157 static const uint32_t default_output_rc_stats = 0;
158 static const int32_t default_speed = -1; // -1 means use library default.
159 static const uint32_t default_threads = 0; // zero means use library default.
160 
161 typedef struct {
162  const char *output_filename;
163  uint32_t frames_to_code;
164  uint32_t frames_to_skip;
165  struct VpxInputContext input_ctx;
166  stats_io_t rc_stats;
167  int tune_content;
168  int inter_layer_pred;
169 } AppInput;
170 
171 static const char *exec_name;
172 
173 void usage_exit(void) {
174  fprintf(stderr, "Usage: %s <options> input_filename -o output_filename\n",
175  exec_name);
176  fprintf(stderr, "Options:\n");
177  arg_show_usage(stderr, svc_args);
178  exit(EXIT_FAILURE);
179 }
180 
181 static void parse_command_line(int argc, const char **argv_,
182  AppInput *app_input, SvcContext *svc_ctx,
183  vpx_codec_enc_cfg_t *enc_cfg) {
184  struct arg arg;
185  char **argv = NULL;
186  char **argi = NULL;
187  char **argj = NULL;
188  vpx_codec_err_t res;
189  unsigned int min_bitrate = 0;
190  unsigned int max_bitrate = 0;
191  char string_options[1024] = { 0 };
192 
193  // initialize SvcContext with parameters that will be passed to vpx_svc_init
194  svc_ctx->log_level = SVC_LOG_DEBUG;
195  svc_ctx->spatial_layers = default_spatial_layers;
196  svc_ctx->temporal_layers = default_temporal_layers;
197  svc_ctx->temporal_layering_mode = default_temporal_layering_mode;
198 #if OUTPUT_RC_STATS
199  svc_ctx->output_rc_stat = default_output_rc_stats;
200 #endif
201  svc_ctx->speed = default_speed;
202  svc_ctx->threads = default_threads;
203 
204  // start with default encoder configuration
205  res = vpx_codec_enc_config_default(vpx_codec_vp9_cx(), enc_cfg, 0);
206  if (res) {
207  die("Failed to get config: %s\n", vpx_codec_err_to_string(res));
208  }
209  // update enc_cfg with app default values
210  enc_cfg->g_w = default_width;
211  enc_cfg->g_h = default_height;
212  enc_cfg->g_timebase.num = default_timebase_num;
213  enc_cfg->g_timebase.den = default_timebase_den;
214  enc_cfg->rc_target_bitrate = default_bitrate;
215  enc_cfg->kf_min_dist = default_kf_dist;
216  enc_cfg->kf_max_dist = default_kf_dist;
217  enc_cfg->rc_end_usage = VPX_CQ;
218 
219  // initialize AppInput with default values
220  app_input->frames_to_code = default_frames_to_code;
221  app_input->frames_to_skip = default_frames_to_skip;
222 
223  // process command line options
224  argv = argv_dup(argc - 1, argv_ + 1);
225  for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
226  arg.argv_step = 1;
227 
228  if (arg_match(&arg, &frames_arg, argi)) {
229  app_input->frames_to_code = arg_parse_uint(&arg);
230  } else if (arg_match(&arg, &outputfile, argi)) {
231  app_input->output_filename = arg.val;
232  } else if (arg_match(&arg, &width_arg, argi)) {
233  enc_cfg->g_w = arg_parse_uint(&arg);
234  } else if (arg_match(&arg, &height_arg, argi)) {
235  enc_cfg->g_h = arg_parse_uint(&arg);
236  } else if (arg_match(&arg, &timebase_arg, argi)) {
237  enc_cfg->g_timebase = arg_parse_rational(&arg);
238  } else if (arg_match(&arg, &bitrate_arg, argi)) {
239  enc_cfg->rc_target_bitrate = arg_parse_uint(&arg);
240  } else if (arg_match(&arg, &skip_frames_arg, argi)) {
241  app_input->frames_to_skip = arg_parse_uint(&arg);
242  } else if (arg_match(&arg, &spatial_layers_arg, argi)) {
243  svc_ctx->spatial_layers = arg_parse_uint(&arg);
244  } else if (arg_match(&arg, &temporal_layers_arg, argi)) {
245  svc_ctx->temporal_layers = arg_parse_uint(&arg);
246 #if OUTPUT_RC_STATS
247  } else if (arg_match(&arg, &output_rc_stats_arg, argi)) {
248  svc_ctx->output_rc_stat = arg_parse_uint(&arg);
249 #endif
250  } else if (arg_match(&arg, &speed_arg, argi)) {
251  svc_ctx->speed = arg_parse_uint(&arg);
252  if (svc_ctx->speed > 9) {
253  warn("Mapping speed %d to speed 9.\n", svc_ctx->speed);
254  }
255  } else if (arg_match(&arg, &aqmode_arg, argi)) {
256  svc_ctx->aqmode = arg_parse_uint(&arg);
257  } else if (arg_match(&arg, &threads_arg, argi)) {
258  svc_ctx->threads = arg_parse_uint(&arg);
259  } else if (arg_match(&arg, &temporal_layering_mode_arg, argi)) {
260  svc_ctx->temporal_layering_mode = enc_cfg->temporal_layering_mode =
261  arg_parse_int(&arg);
262  if (svc_ctx->temporal_layering_mode) {
263  enc_cfg->g_error_resilient = 1;
264  }
265  } else if (arg_match(&arg, &kf_dist_arg, argi)) {
266  enc_cfg->kf_min_dist = arg_parse_uint(&arg);
267  enc_cfg->kf_max_dist = enc_cfg->kf_min_dist;
268  } else if (arg_match(&arg, &scale_factors_arg, argi)) {
269  strncat(string_options, " scale-factors=",
270  sizeof(string_options) - strlen(string_options) - 1);
271  strncat(string_options, arg.val,
272  sizeof(string_options) - strlen(string_options) - 1);
273  } else if (arg_match(&arg, &bitrates_arg, argi)) {
274  strncat(string_options, " bitrates=",
275  sizeof(string_options) - strlen(string_options) - 1);
276  strncat(string_options, arg.val,
277  sizeof(string_options) - strlen(string_options) - 1);
278  } else if (arg_match(&arg, &min_q_arg, argi)) {
279  strncat(string_options, " min-quantizers=",
280  sizeof(string_options) - strlen(string_options) - 1);
281  strncat(string_options, arg.val,
282  sizeof(string_options) - strlen(string_options) - 1);
283  } else if (arg_match(&arg, &max_q_arg, argi)) {
284  strncat(string_options, " max-quantizers=",
285  sizeof(string_options) - strlen(string_options) - 1);
286  strncat(string_options, arg.val,
287  sizeof(string_options) - strlen(string_options) - 1);
288  } else if (arg_match(&arg, &min_bitrate_arg, argi)) {
289  min_bitrate = arg_parse_uint(&arg);
290  } else if (arg_match(&arg, &max_bitrate_arg, argi)) {
291  max_bitrate = arg_parse_uint(&arg);
292  } else if (arg_match(&arg, &lag_in_frame_arg, argi)) {
293  enc_cfg->g_lag_in_frames = arg_parse_uint(&arg);
294  } else if (arg_match(&arg, &rc_end_usage_arg, argi)) {
295  enc_cfg->rc_end_usage = arg_parse_uint(&arg);
296 #if CONFIG_VP9_HIGHBITDEPTH
297  } else if (arg_match(&arg, &bitdepth_arg, argi)) {
298  enc_cfg->g_bit_depth = arg_parse_enum_or_int(&arg);
299  switch (enc_cfg->g_bit_depth) {
300  case VPX_BITS_8:
301  enc_cfg->g_input_bit_depth = 8;
302  enc_cfg->g_profile = 0;
303  break;
304  case VPX_BITS_10:
305  enc_cfg->g_input_bit_depth = 10;
306  enc_cfg->g_profile = 2;
307  break;
308  case VPX_BITS_12:
309  enc_cfg->g_input_bit_depth = 12;
310  enc_cfg->g_profile = 2;
311  break;
312  default:
313  die("Error: Invalid bit depth selected (%d)\n", enc_cfg->g_bit_depth);
314  break;
315  }
316 #endif // CONFIG_VP9_HIGHBITDEPTH
317  } else if (arg_match(&arg, &dropframe_thresh_arg, argi)) {
318  enc_cfg->rc_dropframe_thresh = arg_parse_uint(&arg);
319  } else if (arg_match(&arg, &tune_content_arg, argi)) {
320  app_input->tune_content = arg_parse_uint(&arg);
321  } else if (arg_match(&arg, &inter_layer_pred_arg, argi)) {
322  app_input->inter_layer_pred = arg_parse_uint(&arg);
323  } else {
324  ++argj;
325  }
326  }
327 
328  // There will be a space in front of the string options
329  if (strlen(string_options) > 0)
330  vpx_svc_set_options(svc_ctx, string_options + 1);
331 
332  enc_cfg->g_pass = VPX_RC_ONE_PASS;
333 
334  if (enc_cfg->rc_target_bitrate > 0) {
335  if (min_bitrate > 0) {
336  enc_cfg->rc_2pass_vbr_minsection_pct =
337  min_bitrate * 100 / enc_cfg->rc_target_bitrate;
338  }
339  if (max_bitrate > 0) {
340  enc_cfg->rc_2pass_vbr_maxsection_pct =
341  max_bitrate * 100 / enc_cfg->rc_target_bitrate;
342  }
343  }
344 
345  // Check for unrecognized options
346  for (argi = argv; *argi; ++argi)
347  if (argi[0][0] == '-' && strlen(argi[0]) > 1)
348  die("Error: Unrecognized option %s\n", *argi);
349 
350  if (argv[0] == NULL) {
351  usage_exit();
352  }
353  app_input->input_ctx.filename = argv[0];
354  free(argv);
355 
356  open_input_file(&app_input->input_ctx);
357  if (app_input->input_ctx.file_type == FILE_TYPE_Y4M) {
358  enc_cfg->g_w = app_input->input_ctx.width;
359  enc_cfg->g_h = app_input->input_ctx.height;
360  }
361 
362  if (enc_cfg->g_w < 16 || enc_cfg->g_w % 2 || enc_cfg->g_h < 16 ||
363  enc_cfg->g_h % 2)
364  die("Invalid resolution: %d x %d\n", enc_cfg->g_w, enc_cfg->g_h);
365 
366  printf(
367  "Codec %s\nframes: %d, skip: %d\n"
368  "layers: %d\n"
369  "width %d, height: %d,\n"
370  "num: %d, den: %d, bitrate: %d,\n"
371  "gop size: %d\n",
372  vpx_codec_iface_name(vpx_codec_vp9_cx()), app_input->frames_to_code,
373  app_input->frames_to_skip, svc_ctx->spatial_layers, enc_cfg->g_w,
374  enc_cfg->g_h, enc_cfg->g_timebase.num, enc_cfg->g_timebase.den,
375  enc_cfg->rc_target_bitrate, enc_cfg->kf_max_dist);
376 }
377 
378 #if OUTPUT_RC_STATS
379 // For rate control encoding stats.
380 struct RateControlStats {
381  // Number of input frames per layer.
382  int layer_input_frames[VPX_MAX_LAYERS];
383  // Total (cumulative) number of encoded frames per layer.
384  int layer_tot_enc_frames[VPX_MAX_LAYERS];
385  // Number of encoded non-key frames per layer.
386  int layer_enc_frames[VPX_MAX_LAYERS];
387  // Framerate per layer (cumulative).
388  double layer_framerate[VPX_MAX_LAYERS];
389  // Target average frame size per layer (per-frame-bandwidth per layer).
390  double layer_pfb[VPX_MAX_LAYERS];
391  // Actual average frame size per layer.
392  double layer_avg_frame_size[VPX_MAX_LAYERS];
393  // Average rate mismatch per layer (|target - actual| / target).
394  double layer_avg_rate_mismatch[VPX_MAX_LAYERS];
395  // Actual encoding bitrate per layer (cumulative).
396  double layer_encoding_bitrate[VPX_MAX_LAYERS];
397  // Average of the short-time encoder actual bitrate.
398  // TODO(marpan): Should we add these short-time stats for each layer?
399  double avg_st_encoding_bitrate;
400  // Variance of the short-time encoder actual bitrate.
401  double variance_st_encoding_bitrate;
402  // Window (number of frames) for computing short-time encoding bitrate.
403  int window_size;
404  // Number of window measurements.
405  int window_count;
406 };
407 
408 // Note: these rate control stats assume only 1 key frame in the
409 // sequence (i.e., first frame only).
410 static void set_rate_control_stats(struct RateControlStats *rc,
411  vpx_codec_enc_cfg_t *cfg) {
412  unsigned int sl, tl;
413  // Set the layer (cumulative) framerate and the target layer (non-cumulative)
414  // per-frame-bandwidth, for the rate control encoding stats below.
415  const double framerate = cfg->g_timebase.den / cfg->g_timebase.num;
416 
417  for (sl = 0; sl < cfg->ss_number_layers; ++sl) {
418  for (tl = 0; tl < cfg->ts_number_layers; ++tl) {
419  const int layer = sl * cfg->ts_number_layers + tl;
420  if (cfg->ts_number_layers == 1)
421  rc->layer_framerate[layer] = framerate;
422  else
423  rc->layer_framerate[layer] = framerate / cfg->ts_rate_decimator[tl];
424  if (tl > 0) {
425  rc->layer_pfb[layer] =
426  1000.0 *
427  (cfg->layer_target_bitrate[layer] -
428  cfg->layer_target_bitrate[layer - 1]) /
429  (rc->layer_framerate[layer] - rc->layer_framerate[layer - 1]);
430  } else {
431  rc->layer_pfb[layer] = 1000.0 * cfg->layer_target_bitrate[layer] /
432  rc->layer_framerate[layer];
433  }
434  rc->layer_input_frames[layer] = 0;
435  rc->layer_enc_frames[layer] = 0;
436  rc->layer_tot_enc_frames[layer] = 0;
437  rc->layer_encoding_bitrate[layer] = 0.0;
438  rc->layer_avg_frame_size[layer] = 0.0;
439  rc->layer_avg_rate_mismatch[layer] = 0.0;
440  }
441  }
442  rc->window_count = 0;
443  rc->window_size = 15;
444  rc->avg_st_encoding_bitrate = 0.0;
445  rc->variance_st_encoding_bitrate = 0.0;
446 }
447 
448 static void printout_rate_control_summary(struct RateControlStats *rc,
449  vpx_codec_enc_cfg_t *cfg,
450  int frame_cnt) {
451  unsigned int sl, tl;
452  double perc_fluctuation = 0.0;
453  int tot_num_frames = 0;
454  printf("Total number of processed frames: %d\n\n", frame_cnt - 1);
455  printf("Rate control layer stats for sl%d tl%d layer(s):\n\n",
457  for (sl = 0; sl < cfg->ss_number_layers; ++sl) {
458  tot_num_frames = 0;
459  for (tl = 0; tl < cfg->ts_number_layers; ++tl) {
460  const int layer = sl * cfg->ts_number_layers + tl;
461  const int num_dropped =
462  (tl > 0)
463  ? (rc->layer_input_frames[layer] - rc->layer_enc_frames[layer])
464  : (rc->layer_input_frames[layer] - rc->layer_enc_frames[layer] -
465  1);
466  tot_num_frames += rc->layer_input_frames[layer];
467  rc->layer_encoding_bitrate[layer] = 0.001 * rc->layer_framerate[layer] *
468  rc->layer_encoding_bitrate[layer] /
469  tot_num_frames;
470  rc->layer_avg_frame_size[layer] =
471  rc->layer_avg_frame_size[layer] / rc->layer_enc_frames[layer];
472  rc->layer_avg_rate_mismatch[layer] = 100.0 *
473  rc->layer_avg_rate_mismatch[layer] /
474  rc->layer_enc_frames[layer];
475  printf("For layer#: sl%d tl%d \n", sl, tl);
476  printf("Bitrate (target vs actual): %d %f.0 kbps\n",
477  cfg->layer_target_bitrate[layer],
478  rc->layer_encoding_bitrate[layer]);
479  printf("Average frame size (target vs actual): %f %f bits\n",
480  rc->layer_pfb[layer], rc->layer_avg_frame_size[layer]);
481  printf("Average rate_mismatch: %f\n", rc->layer_avg_rate_mismatch[layer]);
482  printf(
483  "Number of input frames, encoded (non-key) frames, "
484  "and percent dropped frames: %d %d %f.0 \n",
485  rc->layer_input_frames[layer], rc->layer_enc_frames[layer],
486  100.0 * num_dropped / rc->layer_input_frames[layer]);
487  printf("\n");
488  }
489  }
490  rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
491  rc->variance_st_encoding_bitrate =
492  rc->variance_st_encoding_bitrate / rc->window_count -
493  (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
494  perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
495  rc->avg_st_encoding_bitrate;
496  printf("Short-time stats, for window of %d frames: \n", rc->window_size);
497  printf("Average, rms-variance, and percent-fluct: %f %f %f \n",
498  rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate),
499  perc_fluctuation);
500  printf("Num of input, num of encoded (super) frames: %d %d \n", frame_cnt,
501  tot_num_frames);
502 }
503 
504 static vpx_codec_err_t parse_superframe_index(const uint8_t *data,
505  size_t data_sz, uint64_t sizes[8],
506  int *count) {
507  // A chunk ending with a byte matching 0xc0 is an invalid chunk unless
508  // it is a super frame index. If the last byte of real video compression
509  // data is 0xc0 the encoder must add a 0 byte. If we have the marker but
510  // not the associated matching marker byte at the front of the index we have
511  // an invalid bitstream and need to return an error.
512 
513  uint8_t marker;
514 
515  marker = *(data + data_sz - 1);
516  *count = 0;
517 
518  if ((marker & 0xe0) == 0xc0) {
519  const uint32_t frames = (marker & 0x7) + 1;
520  const uint32_t mag = ((marker >> 3) & 0x3) + 1;
521  const size_t index_sz = 2 + mag * frames;
522 
523  // This chunk is marked as having a superframe index but doesn't have
524  // enough data for it, thus it's an invalid superframe index.
525  if (data_sz < index_sz) return VPX_CODEC_CORRUPT_FRAME;
526 
527  {
528  const uint8_t marker2 = *(data + data_sz - index_sz);
529 
530  // This chunk is marked as having a superframe index but doesn't have
531  // the matching marker byte at the front of the index therefore it's an
532  // invalid chunk.
533  if (marker != marker2) return VPX_CODEC_CORRUPT_FRAME;
534  }
535 
536  {
537  // Found a valid superframe index.
538  uint32_t i, j;
539  const uint8_t *x = &data[data_sz - index_sz + 1];
540 
541  for (i = 0; i < frames; ++i) {
542  uint32_t this_sz = 0;
543 
544  for (j = 0; j < mag; ++j) this_sz |= (*x++) << (j * 8);
545  sizes[i] = this_sz;
546  }
547  *count = frames;
548  }
549  }
550  return VPX_CODEC_OK;
551 }
552 #endif
553 
554 // Example pattern for spatial layers and 2 temporal layers used in the
555 // bypass/flexible mode. The pattern corresponds to the pattern
556 // VP9E_TEMPORAL_LAYERING_MODE_0101 (temporal_layering_mode == 2) used in
557 // non-flexible mode.
558 static void set_frame_flags_bypass_mode_ex0(
559  int tl, int num_spatial_layers, int is_key_frame,
560  vpx_svc_ref_frame_config_t *ref_frame_config) {
561  int sl;
562  for (sl = 0; sl < num_spatial_layers; ++sl)
563  ref_frame_config->update_buffer_slot[sl] = 0;
564 
565  for (sl = 0; sl < num_spatial_layers; ++sl) {
566  // Set the buffer idx.
567  if (tl == 0) {
568  ref_frame_config->lst_fb_idx[sl] = sl;
569  if (sl) {
570  if (is_key_frame) {
571  ref_frame_config->lst_fb_idx[sl] = sl - 1;
572  ref_frame_config->gld_fb_idx[sl] = sl;
573  } else {
574  ref_frame_config->gld_fb_idx[sl] = sl - 1;
575  }
576  } else {
577  ref_frame_config->gld_fb_idx[sl] = 0;
578  }
579  ref_frame_config->alt_fb_idx[sl] = 0;
580  } else if (tl == 1) {
581  ref_frame_config->lst_fb_idx[sl] = sl;
582  ref_frame_config->gld_fb_idx[sl] = num_spatial_layers + sl - 1;
583  ref_frame_config->alt_fb_idx[sl] = num_spatial_layers + sl;
584  }
585  // Set the reference and update flags.
586  if (!tl) {
587  if (!sl) {
588  // Base spatial and base temporal (sl = 0, tl = 0)
589  ref_frame_config->reference_last[sl] = 1;
590  ref_frame_config->reference_golden[sl] = 0;
591  ref_frame_config->reference_alt_ref[sl] = 0;
592  ref_frame_config->update_buffer_slot[sl] |=
593  1 << ref_frame_config->lst_fb_idx[sl];
594  } else {
595  if (is_key_frame) {
596  ref_frame_config->reference_last[sl] = 1;
597  ref_frame_config->reference_golden[sl] = 0;
598  ref_frame_config->reference_alt_ref[sl] = 0;
599  ref_frame_config->update_buffer_slot[sl] |=
600  1 << ref_frame_config->gld_fb_idx[sl];
601  } else {
602  // Non-zero spatiall layer.
603  ref_frame_config->reference_last[sl] = 1;
604  ref_frame_config->reference_golden[sl] = 1;
605  ref_frame_config->reference_alt_ref[sl] = 1;
606  ref_frame_config->update_buffer_slot[sl] |=
607  1 << ref_frame_config->lst_fb_idx[sl];
608  }
609  }
610  } else if (tl == 1) {
611  if (!sl) {
612  // Base spatial and top temporal (tl = 1)
613  ref_frame_config->reference_last[sl] = 1;
614  ref_frame_config->reference_golden[sl] = 0;
615  ref_frame_config->reference_alt_ref[sl] = 0;
616  ref_frame_config->update_buffer_slot[sl] |=
617  1 << ref_frame_config->alt_fb_idx[sl];
618  } else {
619  // Non-zero spatial.
620  if (sl < num_spatial_layers - 1) {
621  ref_frame_config->reference_last[sl] = 1;
622  ref_frame_config->reference_golden[sl] = 1;
623  ref_frame_config->reference_alt_ref[sl] = 0;
624  ref_frame_config->update_buffer_slot[sl] |=
625  1 << ref_frame_config->alt_fb_idx[sl];
626  } else if (sl == num_spatial_layers - 1) {
627  // Top spatial and top temporal (non-reference -- doesn't update any
628  // reference buffers)
629  ref_frame_config->reference_last[sl] = 1;
630  ref_frame_config->reference_golden[sl] = 1;
631  ref_frame_config->reference_alt_ref[sl] = 0;
632  }
633  }
634  }
635  }
636 }
637 
638 // Example pattern for 2 spatial layers and 2 temporal layers used in the
639 // bypass/flexible mode, except only 1 spatial layer when temporal_layer_id = 1.
640 static void set_frame_flags_bypass_mode_ex1(
641  int tl, int num_spatial_layers, int is_key_frame,
642  vpx_svc_ref_frame_config_t *ref_frame_config) {
643  int sl;
644  for (sl = 0; sl < num_spatial_layers; ++sl)
645  ref_frame_config->update_buffer_slot[sl] = 0;
646 
647  if (tl == 0) {
648  if (is_key_frame) {
649  ref_frame_config->lst_fb_idx[1] = 0;
650  ref_frame_config->gld_fb_idx[1] = 1;
651  } else {
652  ref_frame_config->lst_fb_idx[1] = 1;
653  ref_frame_config->gld_fb_idx[1] = 0;
654  }
655  ref_frame_config->alt_fb_idx[1] = 0;
656 
657  ref_frame_config->lst_fb_idx[0] = 0;
658  ref_frame_config->gld_fb_idx[0] = 0;
659  ref_frame_config->alt_fb_idx[0] = 0;
660  }
661  if (tl == 1) {
662  ref_frame_config->lst_fb_idx[0] = 0;
663  ref_frame_config->gld_fb_idx[0] = 1;
664  ref_frame_config->alt_fb_idx[0] = 2;
665 
666  ref_frame_config->lst_fb_idx[1] = 1;
667  ref_frame_config->gld_fb_idx[1] = 2;
668  ref_frame_config->alt_fb_idx[1] = 3;
669  }
670  // Set the reference and update flags.
671  if (tl == 0) {
672  // Base spatial and base temporal (sl = 0, tl = 0)
673  ref_frame_config->reference_last[0] = 1;
674  ref_frame_config->reference_golden[0] = 0;
675  ref_frame_config->reference_alt_ref[0] = 0;
676  ref_frame_config->update_buffer_slot[0] |=
677  1 << ref_frame_config->lst_fb_idx[0];
678 
679  if (is_key_frame) {
680  ref_frame_config->reference_last[1] = 1;
681  ref_frame_config->reference_golden[1] = 0;
682  ref_frame_config->reference_alt_ref[1] = 0;
683  ref_frame_config->update_buffer_slot[1] |=
684  1 << ref_frame_config->gld_fb_idx[1];
685  } else {
686  // Non-zero spatiall layer.
687  ref_frame_config->reference_last[1] = 1;
688  ref_frame_config->reference_golden[1] = 1;
689  ref_frame_config->reference_alt_ref[1] = 1;
690  ref_frame_config->update_buffer_slot[1] |=
691  1 << ref_frame_config->lst_fb_idx[1];
692  }
693  }
694  if (tl == 1) {
695  // Top spatial and top temporal (non-reference -- doesn't update any
696  // reference buffers)
697  ref_frame_config->reference_last[1] = 1;
698  ref_frame_config->reference_golden[1] = 0;
699  ref_frame_config->reference_alt_ref[1] = 0;
700  }
701 }
702 
703 #if CONFIG_VP9_DECODER && !SIMULCAST_MODE
704 static void test_decode(vpx_codec_ctx_t *encoder, vpx_codec_ctx_t *decoder,
705  const int frames_out, int *mismatch_seen) {
706  vpx_image_t enc_img, dec_img;
707  struct vp9_ref_frame ref_enc, ref_dec;
708  if (*mismatch_seen) return;
709  /* Get the internal reference frame */
710  ref_enc.idx = 0;
711  ref_dec.idx = 0;
712  vpx_codec_control(encoder, VP9_GET_REFERENCE, &ref_enc);
713  enc_img = ref_enc.img;
714  vpx_codec_control(decoder, VP9_GET_REFERENCE, &ref_dec);
715  dec_img = ref_dec.img;
716 #if CONFIG_VP9_HIGHBITDEPTH
717  if ((enc_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) !=
718  (dec_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH)) {
719  if (enc_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) {
720  vpx_img_alloc(&enc_img, enc_img.fmt - VPX_IMG_FMT_HIGHBITDEPTH,
721  enc_img.d_w, enc_img.d_h, 16);
722  vpx_img_truncate_16_to_8(&enc_img, &ref_enc.img);
723  }
724  if (dec_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) {
725  vpx_img_alloc(&dec_img, dec_img.fmt - VPX_IMG_FMT_HIGHBITDEPTH,
726  dec_img.d_w, dec_img.d_h, 16);
727  vpx_img_truncate_16_to_8(&dec_img, &ref_dec.img);
728  }
729  }
730 #endif
731 
732  if (!compare_img(&enc_img, &dec_img)) {
733  int y[4], u[4], v[4];
734 #if CONFIG_VP9_HIGHBITDEPTH
735  if (enc_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) {
736  find_mismatch_high(&enc_img, &dec_img, y, u, v);
737  } else {
738  find_mismatch(&enc_img, &dec_img, y, u, v);
739  }
740 #else
741  find_mismatch(&enc_img, &dec_img, y, u, v);
742 #endif
743  decoder->err = 1;
744  printf(
745  "Encode/decode mismatch on frame %d at"
746  " Y[%d, %d] {%d/%d},"
747  " U[%d, %d] {%d/%d},"
748  " V[%d, %d] {%d/%d}\n",
749  frames_out, y[0], y[1], y[2], y[3], u[0], u[1], u[2], u[3], v[0], v[1],
750  v[2], v[3]);
751  *mismatch_seen = frames_out;
752  }
753 
754  vpx_img_free(&enc_img);
755  vpx_img_free(&dec_img);
756 }
757 #endif
758 
759 #if OUTPUT_RC_STATS
760 static void svc_output_rc_stats(
761  vpx_codec_ctx_t *codec, vpx_codec_enc_cfg_t *enc_cfg,
762  vpx_svc_layer_id_t *layer_id, const vpx_codec_cx_pkt_t *cx_pkt,
763  struct RateControlStats *rc, VpxVideoWriter **outfile,
764  const uint32_t frame_cnt, const double framerate) {
765  int num_layers_encoded = 0;
766  unsigned int sl, tl;
767  uint64_t sizes[8];
768  uint64_t sizes_parsed[8];
769  int count = 0;
770  double sum_bitrate = 0.0;
771  double sum_bitrate2 = 0.0;
772  vp9_zero(sizes);
773  vp9_zero(sizes_parsed);
774  vpx_codec_control(codec, VP9E_GET_SVC_LAYER_ID, layer_id);
775  parse_superframe_index(cx_pkt->data.frame.buf, cx_pkt->data.frame.sz,
776  sizes_parsed, &count);
777  if (enc_cfg->ss_number_layers == 1) {
778  sizes[0] = cx_pkt->data.frame.sz;
779  } else {
780  for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) {
781  sizes[sl] = 0;
782  if (cx_pkt->data.frame.spatial_layer_encoded[sl]) {
783  sizes[sl] = sizes_parsed[num_layers_encoded];
784  num_layers_encoded++;
785  }
786  }
787  }
788  for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) {
789  unsigned int sl2;
790  uint64_t tot_size = 0;
791 #if SIMULCAST_MODE
792  for (sl2 = 0; sl2 < sl; ++sl2) {
793  if (cx_pkt->data.frame.spatial_layer_encoded[sl2]) tot_size += sizes[sl2];
794  }
795  vpx_video_writer_write_frame(outfile[sl],
796  (uint8_t *)(cx_pkt->data.frame.buf) + tot_size,
797  (size_t)(sizes[sl]), cx_pkt->data.frame.pts);
798 #else
799  for (sl2 = 0; sl2 <= sl; ++sl2) {
800  if (cx_pkt->data.frame.spatial_layer_encoded[sl2]) tot_size += sizes[sl2];
801  }
802  if (tot_size > 0)
803  vpx_video_writer_write_frame(outfile[sl], cx_pkt->data.frame.buf,
804  (size_t)(tot_size), cx_pkt->data.frame.pts);
805 #endif // SIMULCAST_MODE
806  }
807  for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) {
808  if (cx_pkt->data.frame.spatial_layer_encoded[sl]) {
809  for (tl = layer_id->temporal_layer_id; tl < enc_cfg->ts_number_layers;
810  ++tl) {
811  const int layer = sl * enc_cfg->ts_number_layers + tl;
812  ++rc->layer_tot_enc_frames[layer];
813  rc->layer_encoding_bitrate[layer] += 8.0 * sizes[sl];
814  // Keep count of rate control stats per layer, for non-key
815  // frames.
816  if (tl == (unsigned int)layer_id->temporal_layer_id &&
817  !(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY)) {
818  rc->layer_avg_frame_size[layer] += 8.0 * sizes[sl];
819  rc->layer_avg_rate_mismatch[layer] +=
820  fabs(8.0 * sizes[sl] - rc->layer_pfb[layer]) /
821  rc->layer_pfb[layer];
822  ++rc->layer_enc_frames[layer];
823  }
824  }
825  }
826  }
827 
828  // Update for short-time encoding bitrate states, for moving
829  // window of size rc->window, shifted by rc->window / 2.
830  // Ignore first window segment, due to key frame.
831  if (frame_cnt > (unsigned int)rc->window_size) {
832  for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) {
833  if (cx_pkt->data.frame.spatial_layer_encoded[sl])
834  sum_bitrate += 0.001 * 8.0 * sizes[sl] * framerate;
835  }
836  if (frame_cnt % rc->window_size == 0) {
837  rc->window_count += 1;
838  rc->avg_st_encoding_bitrate += sum_bitrate / rc->window_size;
839  rc->variance_st_encoding_bitrate +=
840  (sum_bitrate / rc->window_size) * (sum_bitrate / rc->window_size);
841  }
842  }
843 
844  // Second shifted window.
845  if (frame_cnt > (unsigned int)(rc->window_size + rc->window_size / 2)) {
846  for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) {
847  sum_bitrate2 += 0.001 * 8.0 * sizes[sl] * framerate;
848  }
849 
850  if (frame_cnt > (unsigned int)(2 * rc->window_size) &&
851  frame_cnt % rc->window_size == 0) {
852  rc->window_count += 1;
853  rc->avg_st_encoding_bitrate += sum_bitrate2 / rc->window_size;
854  rc->variance_st_encoding_bitrate +=
855  (sum_bitrate2 / rc->window_size) * (sum_bitrate2 / rc->window_size);
856  }
857  }
858 }
859 #endif
860 
861 int main(int argc, const char **argv) {
862  AppInput app_input;
863  VpxVideoWriter *writer = NULL;
864  VpxVideoInfo info;
865  vpx_codec_ctx_t encoder;
866  vpx_codec_enc_cfg_t enc_cfg;
867  SvcContext svc_ctx;
868  vpx_svc_frame_drop_t svc_drop_frame;
869  uint32_t i;
870  uint32_t frame_cnt = 0;
871  vpx_image_t raw;
872  vpx_codec_err_t res;
873  int pts = 0; /* PTS starts at 0 */
874  int frame_duration = 1; /* 1 timebase tick per frame */
875  int end_of_stream = 0;
876  int frames_received = 0;
877 #if OUTPUT_RC_STATS
878  VpxVideoWriter *outfile[VPX_SS_MAX_LAYERS] = { NULL };
879  struct RateControlStats rc;
880  vpx_svc_layer_id_t layer_id;
881  vpx_svc_ref_frame_config_t ref_frame_config;
882  unsigned int sl;
883  double framerate = 30.0;
884 #endif
885  struct vpx_usec_timer timer;
886  int64_t cx_time = 0;
887 #if CONFIG_INTERNAL_STATS
888  FILE *f = fopen("opsnr.stt", "a");
889 #endif
890 #if CONFIG_VP9_DECODER && !SIMULCAST_MODE
891  int mismatch_seen = 0;
892  vpx_codec_ctx_t decoder;
893 #endif
894  memset(&svc_ctx, 0, sizeof(svc_ctx));
895  memset(&app_input, 0, sizeof(AppInput));
896  memset(&info, 0, sizeof(VpxVideoInfo));
897  memset(&layer_id, 0, sizeof(vpx_svc_layer_id_t));
898  memset(&rc, 0, sizeof(struct RateControlStats));
899  exec_name = argv[0];
900 
901  /* Setup default input stream settings */
902  app_input.input_ctx.framerate.numerator = 30;
903  app_input.input_ctx.framerate.denominator = 1;
904  app_input.input_ctx.only_i420 = 1;
905  app_input.input_ctx.bit_depth = 0;
906 
907  parse_command_line(argc, argv, &app_input, &svc_ctx, &enc_cfg);
908 
909  // Y4M reader handles its own allocation.
910  if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) {
911 // Allocate image buffer
912 #if CONFIG_VP9_HIGHBITDEPTH
913  if (!vpx_img_alloc(&raw,
914  enc_cfg.g_input_bit_depth == 8 ? VPX_IMG_FMT_I420
916  enc_cfg.g_w, enc_cfg.g_h, 32)) {
917  die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h);
918  }
919 #else
920  if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, enc_cfg.g_w, enc_cfg.g_h, 32)) {
921  die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h);
922  }
923 #endif // CONFIG_VP9_HIGHBITDEPTH
924  }
925 
926  // Initialize codec
927  if (vpx_svc_init(&svc_ctx, &encoder, vpx_codec_vp9_cx(), &enc_cfg) !=
928  VPX_CODEC_OK)
929  die("Failed to initialize encoder\n");
930 #if CONFIG_VP9_DECODER && !SIMULCAST_MODE
931  if (vpx_codec_dec_init(
932  &decoder, get_vpx_decoder_by_name("vp9")->codec_interface(), NULL, 0))
933  die("Failed to initialize decoder\n");
934 #endif
935 
936 #if OUTPUT_RC_STATS
937  rc.window_count = 1;
938  rc.window_size = 15; // Silence a static analysis warning.
939  rc.avg_st_encoding_bitrate = 0.0;
940  rc.variance_st_encoding_bitrate = 0.0;
941  if (svc_ctx.output_rc_stat) {
942  set_rate_control_stats(&rc, &enc_cfg);
943  framerate = enc_cfg.g_timebase.den / enc_cfg.g_timebase.num;
944  }
945 #endif
946 
947  info.codec_fourcc = VP9_FOURCC;
948  info.frame_width = enc_cfg.g_w;
949  info.frame_height = enc_cfg.g_h;
950  info.time_base.numerator = enc_cfg.g_timebase.num;
951  info.time_base.denominator = enc_cfg.g_timebase.den;
952 
953  writer =
954  vpx_video_writer_open(app_input.output_filename, kContainerIVF, &info);
955  if (!writer)
956  die("Failed to open %s for writing\n", app_input.output_filename);
957 
958 #if OUTPUT_RC_STATS
959  // Write out spatial layer stream.
960  // TODO(marpan/jianj): allow for writing each spatial and temporal stream.
961  if (svc_ctx.output_rc_stat) {
962  for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
963  char file_name[PATH_MAX];
964 
965  snprintf(file_name, sizeof(file_name), "%s_s%d.ivf",
966  app_input.output_filename, sl);
967  outfile[sl] = vpx_video_writer_open(file_name, kContainerIVF, &info);
968  if (!outfile[sl]) die("Failed to open %s for writing", file_name);
969  }
970  }
971 #endif
972 
973  // skip initial frames
974  for (i = 0; i < app_input.frames_to_skip; ++i)
975  read_frame(&app_input.input_ctx, &raw);
976 
977  if (svc_ctx.speed != -1)
978  vpx_codec_control(&encoder, VP8E_SET_CPUUSED, svc_ctx.speed);
979  if (svc_ctx.threads) {
981  get_msb(svc_ctx.threads));
982  if (svc_ctx.threads > 1)
983  vpx_codec_control(&encoder, VP9E_SET_ROW_MT, 1);
984  else
985  vpx_codec_control(&encoder, VP9E_SET_ROW_MT, 0);
986  }
987  if (svc_ctx.speed >= 5 && svc_ctx.aqmode == 1)
988  vpx_codec_control(&encoder, VP9E_SET_AQ_MODE, 3);
989  if (svc_ctx.speed >= 5)
992 
994  app_input.inter_layer_pred);
995 
997 
998  vpx_codec_control(&encoder, VP9E_SET_TUNE_CONTENT, app_input.tune_content);
999 
1002 
1003  svc_drop_frame.framedrop_mode = FULL_SUPERFRAME_DROP;
1004  for (sl = 0; sl < (unsigned int)svc_ctx.spatial_layers; ++sl)
1005  svc_drop_frame.framedrop_thresh[sl] = enc_cfg.rc_dropframe_thresh;
1006  svc_drop_frame.max_consec_drop = INT_MAX;
1007  vpx_codec_control(&encoder, VP9E_SET_SVC_FRAME_DROP_LAYER, &svc_drop_frame);
1008 
1009  // Encode frames
1010  while (!end_of_stream) {
1011  vpx_codec_iter_t iter = NULL;
1012  const vpx_codec_cx_pkt_t *cx_pkt;
1013  // Example patterns for bypass/flexible mode:
1014  // example_pattern = 0: 2 temporal layers, and spatial_layers = 1,2,3. Exact
1015  // to fixed SVC patterns. example_pattern = 1: 2 spatial and 2 temporal
1016  // layers, with SL0 only has TL0, and SL1 has both TL0 and TL1. This example
1017  // uses the extended API.
1018  int example_pattern = 0;
1019  if (frame_cnt >= app_input.frames_to_code ||
1020  !read_frame(&app_input.input_ctx, &raw)) {
1021  // We need one extra vpx_svc_encode call at end of stream to flush
1022  // encoder and get remaining data
1023  end_of_stream = 1;
1024  }
1025 
1026  // For BYPASS/FLEXIBLE mode, set the frame flags (reference and updates)
1027  // and the buffer indices for each spatial layer of the current
1028  // (super)frame to be encoded. The spatial and temporal layer_id for the
1029  // current frame also needs to be set.
1030  // TODO(marpan): Should rename the "VP9E_TEMPORAL_LAYERING_MODE_BYPASS"
1031  // mode to "VP9E_LAYERING_MODE_BYPASS".
1032  if (svc_ctx.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
1033  layer_id.spatial_layer_id = 0;
1034  // Example for 2 temporal layers.
1035  if (frame_cnt % 2 == 0) {
1036  layer_id.temporal_layer_id = 0;
1037  for (i = 0; i < VPX_SS_MAX_LAYERS; i++)
1038  layer_id.temporal_layer_id_per_spatial[i] = 0;
1039  } else {
1040  layer_id.temporal_layer_id = 1;
1041  for (i = 0; i < VPX_SS_MAX_LAYERS; i++)
1042  layer_id.temporal_layer_id_per_spatial[i] = 1;
1043  }
1044  if (example_pattern == 1) {
1045  // example_pattern 1 is hard-coded for 2 spatial and 2 temporal layers.
1046  assert(svc_ctx.spatial_layers == 2);
1047  assert(svc_ctx.temporal_layers == 2);
1048  if (frame_cnt % 2 == 0) {
1049  // Spatial layer 0 and 1 are encoded.
1050  layer_id.temporal_layer_id_per_spatial[0] = 0;
1051  layer_id.temporal_layer_id_per_spatial[1] = 0;
1052  layer_id.spatial_layer_id = 0;
1053  } else {
1054  // Only spatial layer 1 is encoded here.
1055  layer_id.temporal_layer_id_per_spatial[1] = 1;
1056  layer_id.spatial_layer_id = 1;
1057  }
1058  }
1059  vpx_codec_control(&encoder, VP9E_SET_SVC_LAYER_ID, &layer_id);
1060  // TODO(jianj): Fix the parameter passing for "is_key_frame" in
1061  // set_frame_flags_bypass_model() for case of periodic key frames.
1062  if (example_pattern == 0) {
1063  set_frame_flags_bypass_mode_ex0(layer_id.temporal_layer_id,
1064  svc_ctx.spatial_layers, frame_cnt == 0,
1065  &ref_frame_config);
1066  } else if (example_pattern == 1) {
1067  set_frame_flags_bypass_mode_ex1(layer_id.temporal_layer_id,
1068  svc_ctx.spatial_layers, frame_cnt == 0,
1069  &ref_frame_config);
1070  }
1071  ref_frame_config.duration[0] = frame_duration * 1;
1072  ref_frame_config.duration[1] = frame_duration * 1;
1073 
1075  &ref_frame_config);
1076  // Keep track of input frames, to account for frame drops in rate control
1077  // stats/metrics.
1078  for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
1079  ++rc.layer_input_frames[sl * enc_cfg.ts_number_layers +
1080  layer_id.temporal_layer_id];
1081  }
1082  } else {
1083  // For the fixed pattern SVC, temporal layer is given by superframe count.
1084  unsigned int tl = 0;
1085  if (enc_cfg.ts_number_layers == 2)
1086  tl = (frame_cnt % 2 != 0);
1087  else if (enc_cfg.ts_number_layers == 3) {
1088  if (frame_cnt % 2 != 0) tl = 2;
1089  if ((frame_cnt > 1) && ((frame_cnt - 2) % 4 == 0)) tl = 1;
1090  }
1091  for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl)
1092  ++rc.layer_input_frames[sl * enc_cfg.ts_number_layers + tl];
1093  }
1094 
1095  vpx_usec_timer_start(&timer);
1096  res = vpx_svc_encode(
1097  &svc_ctx, &encoder, (end_of_stream ? NULL : &raw), pts, frame_duration,
1098  svc_ctx.speed >= 5 ? VPX_DL_REALTIME : VPX_DL_GOOD_QUALITY);
1099  vpx_usec_timer_mark(&timer);
1100  cx_time += vpx_usec_timer_elapsed(&timer);
1101 
1102  fflush(stdout);
1103  if (res != VPX_CODEC_OK) {
1104  die_codec(&encoder, "Failed to encode frame");
1105  }
1106 
1107  while ((cx_pkt = vpx_codec_get_cx_data(&encoder, &iter)) != NULL) {
1108  switch (cx_pkt->kind) {
1109  case VPX_CODEC_CX_FRAME_PKT: {
1110  SvcInternal_t *const si = (SvcInternal_t *)svc_ctx.internal;
1111  if (cx_pkt->data.frame.sz > 0) {
1112  vpx_video_writer_write_frame(writer, cx_pkt->data.frame.buf,
1113  cx_pkt->data.frame.sz,
1114  cx_pkt->data.frame.pts);
1115 #if OUTPUT_RC_STATS
1116  if (svc_ctx.output_rc_stat) {
1117  svc_output_rc_stats(&encoder, &enc_cfg, &layer_id, cx_pkt, &rc,
1118  outfile, frame_cnt, framerate);
1119  }
1120 #endif
1121  }
1122  /*
1123  printf("SVC frame: %d, kf: %d, size: %d, pts: %d\n", frames_received,
1124  !!(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY),
1125  (int)cx_pkt->data.frame.sz, (int)cx_pkt->data.frame.pts);
1126  */
1127  if (enc_cfg.ss_number_layers == 1 && enc_cfg.ts_number_layers == 1)
1128  si->bytes_sum[0] += (int)cx_pkt->data.frame.sz;
1129  ++frames_received;
1130 #if CONFIG_VP9_DECODER && !SIMULCAST_MODE
1131  if (vpx_codec_decode(&decoder, cx_pkt->data.frame.buf,
1132  (unsigned int)cx_pkt->data.frame.sz, NULL, 0))
1133  die_codec(&decoder, "Failed to decode frame.");
1134 #endif
1135  break;
1136  }
1137  case VPX_CODEC_STATS_PKT: {
1138  stats_write(&app_input.rc_stats, cx_pkt->data.twopass_stats.buf,
1139  cx_pkt->data.twopass_stats.sz);
1140  break;
1141  }
1142  default: { break; }
1143  }
1144 
1145 #if CONFIG_VP9_DECODER && !SIMULCAST_MODE
1146  vpx_codec_control(&encoder, VP9E_GET_SVC_LAYER_ID, &layer_id);
1147  // Don't look for mismatch on top spatial and top temporal layers as they
1148  // are non reference frames.
1149  if ((enc_cfg.ss_number_layers > 1 || enc_cfg.ts_number_layers > 1) &&
1150  !(layer_id.temporal_layer_id > 0 &&
1151  layer_id.temporal_layer_id == (int)enc_cfg.ts_number_layers - 1 &&
1152  cx_pkt->data.frame
1153  .spatial_layer_encoded[enc_cfg.ss_number_layers - 1])) {
1154  test_decode(&encoder, &decoder, frame_cnt, &mismatch_seen);
1155  }
1156 #endif
1157  }
1158 
1159  if (!end_of_stream) {
1160  ++frame_cnt;
1161  pts += frame_duration;
1162  }
1163  }
1164 
1165  printf("Processed %d frames\n", frame_cnt);
1166 
1167  close_input_file(&app_input.input_ctx);
1168 
1169 #if OUTPUT_RC_STATS
1170  if (svc_ctx.output_rc_stat) {
1171  printout_rate_control_summary(&rc, &enc_cfg, frame_cnt);
1172  printf("\n");
1173  }
1174 #endif
1175  if (vpx_codec_destroy(&encoder))
1176  die_codec(&encoder, "Failed to destroy codec");
1177  if (writer) {
1178  vpx_video_writer_close(writer);
1179  }
1180 #if OUTPUT_RC_STATS
1181  if (svc_ctx.output_rc_stat) {
1182  for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
1183  vpx_video_writer_close(outfile[sl]);
1184  }
1185  }
1186 #endif
1187 #if CONFIG_INTERNAL_STATS
1188  if (mismatch_seen) {
1189  fprintf(f, "First mismatch occurred in frame %d\n", mismatch_seen);
1190  } else {
1191  fprintf(f, "No mismatch detected in recon buffers\n");
1192  }
1193  fclose(f);
1194 #endif
1195  printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n",
1196  frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
1197  1000000 * (double)frame_cnt / (double)cx_time);
1198  if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) {
1199  vpx_img_free(&raw);
1200  }
1201  // display average size, psnr
1202  vpx_svc_dump_statistics(&svc_ctx);
1203  vpx_svc_release(&svc_ctx);
1204  return EXIT_SUCCESS;
1205 }
vpx_codec_err_t vpx_codec_destroy(vpx_codec_ctx_t *ctx)
Destroy a codec instance.
const void * vpx_codec_iter_t
Iterator.
Definition: vpx_codec.h:190
const char * vpx_codec_iface_name(vpx_codec_iface_t *iface)
Return the name for a given interface.
const char * vpx_codec_err_to_string(vpx_codec_err_t err)
Convert error number to printable string.
#define vpx_codec_control(ctx, id, data)
vpx_codec_control wrapper macro
Definition: vpx_codec.h:407
vpx_codec_err_t
Algorithm return codes.
Definition: vpx_codec.h:93
@ VPX_CODEC_CORRUPT_FRAME
The coded data for this stream is corrupt or incomplete.
Definition: vpx_codec.h:133
@ VPX_CODEC_OK
Operation completed without error.
Definition: vpx_codec.h:95
@ VPX_BITS_8
Definition: vpx_codec.h:221
@ VPX_BITS_12
Definition: vpx_codec.h:223
@ VPX_BITS_10
Definition: vpx_codec.h:222
vpx_codec_err_t vpx_codec_decode(vpx_codec_ctx_t *ctx, const uint8_t *data, unsigned int data_sz, void *user_priv, long deadline)
Decode data.
#define vpx_codec_dec_init(ctx, iface, cfg, flags)
Convenience macro for vpx_codec_dec_init_ver()
Definition: vpx_decoder.h:143
#define VPX_DL_REALTIME
deadline parameter analogous to VPx REALTIME mode.
Definition: vpx_encoder.h:833
#define VPX_DL_GOOD_QUALITY
deadline parameter analogous to VPx GOOD QUALITY mode.
Definition: vpx_encoder.h:835
#define VPX_MAX_LAYERS
Definition: vpx_encoder.h:44
#define VPX_FRAME_IS_KEY
Definition: vpx_encoder.h:118
#define VPX_SS_MAX_LAYERS
Definition: vpx_encoder.h:47
vpx_codec_err_t vpx_codec_enc_config_default(vpx_codec_iface_t *iface, vpx_codec_enc_cfg_t *cfg, unsigned int usage)
Get a default configuration.
const vpx_codec_cx_pkt_t * vpx_codec_get_cx_data(vpx_codec_ctx_t *ctx, vpx_codec_iter_t *iter)
Encoded data iterator.
@ VPX_CODEC_CX_FRAME_PKT
Definition: vpx_encoder.h:149
@ VPX_CODEC_STATS_PKT
Definition: vpx_encoder.h:150
@ VPX_RC_ONE_PASS
Definition: vpx_encoder.h:227
@ VPX_CQ
Definition: vpx_encoder.h:236
@ FULL_SUPERFRAME_DROP
Definition: vp8cx.h:877
@ VP9E_SET_SVC_LAYER_ID
Codec control function to set svc layer for spatial and temporal.
Definition: vp8cx.h:454
@ VP8E_SET_MAX_INTRA_BITRATE_PCT
Codec control function to set Max data rate for Intra frames.
Definition: vp8cx.h:258
@ VP9E_SET_SVC_INTER_LAYER_PRED
Codec control function to constrain the inter-layer prediction (prediction of lower spatial resolutio...
Definition: vp8cx.h:620
@ VP9E_SET_AQ_MODE
Codec control function to set adaptive quantization mode.
Definition: vp8cx.h:399
@ VP9E_SET_DISABLE_OVERSHOOT_MAXQ_CBR
Codec control function to disable increase Q on overshoot in CBR.
Definition: vp8cx.h:695
@ VP9E_SET_TUNE_CONTENT
Codec control function to set content type.
Definition: vp8cx.h:464
@ VP9E_SET_ROW_MT
Codec control function to set row level multi-threading.
Definition: vp8cx.h:571
@ VP8E_SET_CPUUSED
Codec control function to set encoder internal speed settings.
Definition: vp8cx.h:156
@ VP9E_SET_TILE_COLUMNS
Codec control function to set number of tile columns.
Definition: vp8cx.h:352
@ VP9E_SET_SVC_FRAME_DROP_LAYER
Codec control function to set mode and thresholds for frame dropping in SVC. Drop frame thresholds ar...
Definition: vp8cx.h:629
@ VP9E_SET_SVC_REF_FRAME_CONFIG
Codec control function to set the frame flags and buffer indices for spatial layers....
Definition: vp8cx.h:546
@ VP8E_SET_STATIC_THRESHOLD
Codec control function to set the threshold for MBs treated static.
Definition: vp8cx.h:189
@ VP9E_SET_DISABLE_LOOPFILTER
Codec control function to disable loopfilter.
Definition: vp8cx.h:704
@ VP9E_SET_NOISE_SENSITIVITY
Codec control function to set noise sensitivity.
Definition: vp8cx.h:422
@ VP9E_GET_SVC_LAYER_ID
Codec control function to get svc layer ID.
Definition: vp8cx.h:472
@ VP9E_TEMPORAL_LAYERING_MODE_BYPASS
Bypass mode. Used when application needs to control temporal layering. This will only work when the n...
Definition: vp8cx.h:744
@ VP9_GET_REFERENCE
Definition: vp8.h:55
VP9 specific reference frame data struct.
Definition: vp8.h:110
int idx
Definition: vp8.h:111
Codec context structure.
Definition: vpx_codec.h:200
vpx_codec_err_t err
Definition: vpx_codec.h:203
Encoder output packet.
Definition: vpx_encoder.h:161
vpx_fixed_buf_t twopass_stats
Definition: vpx_encoder.h:184
enum vpx_codec_cx_pkt_kind kind
Definition: vpx_encoder.h:162
struct vpx_codec_cx_pkt::@1::@2 frame
union vpx_codec_cx_pkt::@1 data
Encoder configuration structure.
Definition: vpx_encoder.h:270
int temporal_layering_mode
Temporal layering mode indicating which temporal layering scheme to use.
Definition: vpx_encoder.h:695
unsigned int kf_min_dist
Keyframe minimum interval.
Definition: vpx_encoder.h:607
unsigned int ts_number_layers
Number of temporal coding layers.
Definition: vpx_encoder.h:646
unsigned int ss_number_layers
Number of spatial coding layers.
Definition: vpx_encoder.h:626
unsigned int rc_2pass_vbr_minsection_pct
Two-pass mode per-GOP minimum bitrate.
Definition: vpx_encoder.h:572
unsigned int g_profile
Bitstream profile to use.
Definition: vpx_encoder.h:297
unsigned int layer_target_bitrate[12]
Target bitrate for each spatial/temporal layer.
Definition: vpx_encoder.h:686
unsigned int g_h
Height of the frame.
Definition: vpx_encoder.h:315
vpx_codec_er_flags_t g_error_resilient
Enable error resilient modes.
Definition: vpx_encoder.h:353
unsigned int g_w
Width of the frame.
Definition: vpx_encoder.h:306
unsigned int rc_dropframe_thresh
Temporal resampling configuration, if supported by the codec.
Definition: vpx_encoder.h:393
struct vpx_rational g_timebase
Stream timebase units.
Definition: vpx_encoder.h:345
enum vpx_enc_pass g_pass
Multi-pass Encoding Mode.
Definition: vpx_encoder.h:360
unsigned int g_lag_in_frames
Allow lagged encoding.
Definition: vpx_encoder.h:374
enum vpx_rc_mode rc_end_usage
Rate control algorithm to use.
Definition: vpx_encoder.h:442
vpx_bit_depth_t g_bit_depth
Bit-depth of the codec.
Definition: vpx_encoder.h:323
unsigned int rc_2pass_vbr_maxsection_pct
Two-pass mode per-GOP maximum bitrate.
Definition: vpx_encoder.h:579
unsigned int rc_target_bitrate
Target data rate.
Definition: vpx_encoder.h:462
unsigned int g_input_bit_depth
Bit-depth of the input frames.
Definition: vpx_encoder.h:331
unsigned int ts_rate_decimator[5]
Frame rate decimation factor for each temporal layer.
Definition: vpx_encoder.h:660
unsigned int kf_max_dist
Keyframe maximum interval.
Definition: vpx_encoder.h:616
size_t sz
Definition: vpx_encoder.h:100
void * buf
Definition: vpx_encoder.h:99
Image Descriptor.
Definition: vpx_image.h:72
vpx_img_fmt_t fmt
Definition: vpx_image.h:73
unsigned int d_h
Definition: vpx_image.h:84
unsigned int d_w
Definition: vpx_image.h:83
int den
Definition: vpx_encoder.h:222
int num
Definition: vpx_encoder.h:221
vp9 svc frame dropping parameters.
Definition: vp8cx.h:889
int framedrop_thresh[5]
Definition: vp8cx.h:890
SVC_LAYER_DROP_MODE framedrop_mode
Definition: vp8cx.h:892
int max_consec_drop
Definition: vp8cx.h:893
vp9 svc layer parameters
Definition: vp8cx.h:838
int temporal_layer_id
Definition: vp8cx.h:841
vp9 svc frame flag parameters.
Definition: vp8cx.h:853
int lst_fb_idx[5]
Definition: vp8cx.h:854
int update_buffer_slot[5]
Definition: vp8cx.h:857
int gld_fb_idx[5]
Definition: vp8cx.h:855
int reference_last[5]
Definition: vp8cx.h:862
int reference_golden[5]
Definition: vp8cx.h:863
int reference_alt_ref[5]
Definition: vp8cx.h:864
int64_t duration[5]
Definition: vp8cx.h:865
int alt_fb_idx[5]
Definition: vp8cx.h:856
Provides definitions for using VP8 or VP9 encoder algorithm within the vpx Codec Interface.
Describes the encoder algorithm interface to applications.
#define VPX_IMG_FMT_HIGHBITDEPTH
Definition: vpx_image.h:35
@ VPX_IMG_FMT_I42016
Definition: vpx_image.h:47
@ VPX_IMG_FMT_I420
Definition: vpx_image.h:42
vpx_image_t * vpx_img_alloc(vpx_image_t *img, vpx_img_fmt_t fmt, unsigned int d_w, unsigned int d_h, unsigned int align)
Open a descriptor, allocating storage for the underlying image.
void vpx_img_free(vpx_image_t *img)
Close an image descriptor.